KABR / download.py
egrace479's picture
Dataset loading script (#5)
9a70efe
import os
import requests
import time
import zipfile
import glob
from hashlib import md5
import concurrent.futures
base_url = "https://huggingface.co/datasets/imageomics/KABR/resolve/main/KABR"
"""
To extend the dataset, add additional animals and parts ranges to the list and dictionary below.
"""
animals = ["giraffes", "zebras_grevys", "zebras_plains"]
animal_parts_range = {
"giraffes": ("aa", "ad"),
"zebras_grevys": ("aa", "am"),
"zebras_plains": ("aa", "al"),
}
dataset_prefix = "dataset/image/"
# Define the static files that are not dependent on the animals list
static_files = [
"README.txt",
"annotation/classes.json",
"annotation/distribution.xlsx",
"annotation/train.csv",
"annotation/val.csv",
"configs/I3D.yaml",
"configs/SLOWFAST.yaml",
"configs/X3D.yaml",
"dataset/image2video.py",
"dataset/image2visual.py",
]
def generate_part_files(animal, start, end):
start_a, start_b = ord(start[0]), ord(start[1])
end_a, end_b = ord(end[0]), ord(end[1])
return [
f"{dataset_prefix}{animal}_part_{chr(a)}{chr(b)}"
for a in range(start_a, end_a + 1)
for b in range(start_b, end_b + 1)
]
# Generate the part files for each animal
part_files = [
part
for animal, (start, end) in animal_parts_range.items()
for part in generate_part_files(animal, start, end)
]
archive_md5_files = [f"{dataset_prefix}{animal}_md5.txt" for animal in animals]
files = static_files + archive_md5_files + part_files
def progress_bar(iteration, total, message, bar_length=50):
progress = (iteration / total)
bar = '=' * int(round(progress * bar_length) - 1)
spaces = ' ' * (bar_length - len(bar))
message = f'{message:<100}'
print(f'[{bar + spaces}] {int(progress * 100)}% {message}', end='\r', flush=True)
if iteration == total:
print()
# Directory to save files
save_dir = "KABR_files"
# Loop through each relative file path
print(f"Downloading the Kenyan Animal Behavior Recognition (KABR) dataset ...")
total = len(files)
for i, file_path in enumerate(files):
# Construct the full URL
save_path = os.path.join(save_dir, file_path)
if os.path.exists(save_path):
print(f"File {save_path} already exists. Skipping download.")
continue
full_url = f"{base_url}/{file_path}"
# Create the necessary directories based on the file path
os.makedirs(os.path.join(save_dir, os.path.dirname(file_path)), exist_ok=True)
# Download the file and save it with the preserved file path
response = requests.get(full_url)
with open(save_path, 'wb') as file:
file.write(response.content)
progress_bar(i+1, total, f"downloaded: {save_path}")
print("Download of repository contents completed.")
print(f"Concatenating split files into a full archive for {animals} ...")
def concatenate_files(animal):
print(f"Concatenating files for {animal} ...")
part_files_pattern = f"{save_dir}/dataset/image/{animal}_part_*"
part_files = sorted(glob.glob(part_files_pattern))
if part_files:
with open(f"{save_dir}/dataset/image/{animal}.zip", 'wb') as f_out:
for f_name in part_files:
with open(f_name, 'rb') as f_in:
# Read and write in chunks
CHUNK_SIZE = 8*1024*1024 # 8MB
for chunk in iter(lambda: f_in.read(CHUNK_SIZE), b""):
f_out.write(chunk)
# Delete part files as they are concatenated
os.remove(f_name)
print(f"Archive for {animal} concatenated.")
else:
print(f"No part files found for {animal}.")
with concurrent.futures.ThreadPoolExecutor() as executor:
executor.map(concatenate_files, animals)
def compute_md5(file_path):
hasher = md5()
with open(file_path, 'rb') as f:
CHUNK_SIZE = 8*1024*1024 # 8MB
for chunk in iter(lambda: f.read(CHUNK_SIZE), b""):
hasher.update(chunk)
return hasher.hexdigest()
def verify_and_extract(animal):
print(f"Confirming data integrity for {animal}.zip ...")
zip_md5 = compute_md5(f"{save_dir}/dataset/image/{animal}.zip")
with open(f"{save_dir}/dataset/image/{animal}_md5.txt", 'r') as file:
expected_md5 = file.read().strip().split()[0]
if zip_md5 == expected_md5:
print(f"MD5 sum for {animal}.zip is correct.")
print(f"Extracting {animal}.zip ...")
with zipfile.ZipFile(f"{save_dir}/dataset/image/{animal}.zip", 'r') as zip_ref:
zip_ref.extractall(f"{save_dir}/dataset/image/")
print(f"{animal}.zip extracted.")
print(f"Cleaning up for {animal} ...")
os.remove(f"{save_dir}/dataset/image/{animal}.zip")
os.remove(f"{save_dir}/dataset/image/{animal}_md5.txt")
else:
print(f"MD5 sum for {animal}.zip is incorrect. Expected: {expected_md5}, but got: {zip_md5}.")
print("There may be data corruption. Please try to download and reconstruct the data again or reach out to the corresponding authors for assistance.")
with concurrent.futures.ThreadPoolExecutor() as executor:
executor.map(verify_and_extract, animals)
print("Download script finished.")