Datasets:
File size: 1,316 Bytes
aa2d71d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
---
annotations_creators: []
language: []
language_creators: []
license: []
multilinguality: []
pretty_name: credit-card
size_categories:
- 10K<n<100K
source_datasets: []
tags:
- interpretability
- fairness
- medicine
task_categories:
- tabular-classification
task_ids: []
---
Port of the credit-card dataset from UCI (link [here](https://www.kaggle.com/datasets/uciml/default-of-credit-card-clients-dataset)). See details there and use carefully.
Basic preprocessing done by the [imodels team](https://github.com/csinva/imodels) in [this notebook](https://github.com/csinva/imodels-data/blob/master/notebooks_fetch_data/00_get_datasets_custom.ipynb).
The target is the binary outcome `default.payment.next.month`.
### Sample usage
Load the data:
```
from datasets import load_dataset
dataset = load_dataset("imodels/credit-card")
df = pd.DataFrame(dataset['train'])
X = df.drop(columns=['default.payment.next.month'])
y = df['default.payment.next.month'].values
```
Fit a model:
```
import imodels
import numpy as np
m = imodels.FIGSClassifier(max_rules=5)
m.fit(X, y)
print(m)
```
Evaluate:
```
df_test = pd.DataFrame(dataset['test'])
X_test = df.drop(columns=['default.payment.next.month'])
y_test = df['default.payment.next.month'].values
print('accuracy', np.mean(m.predict(X_test) == y_test))
``` |