--- license: mit dataset_info: features: - name: text dtype: string - name: impoliteness dtype: int64 - name: intolerance dtype: int64 splits: - name: train num_bytes: 2169574.4014020115 num_examples: 10498 - name: test num_bytes: 542703.5985979884 num_examples: 2626 download_size: 1726706 dataset_size: 2712278 task_categories: - text-classification language: - en --- ## Overview The TwitCivility dataset is specifically developed to classify political incivility, focusing on multidimensional aspects of impoliteness and intolerance. Detailed methodologies are outlined in our [paper](https://arxiv.org/abs/2305.14964). ## Languages All text is written in English. ## Dataset Structure ### Data Fields We release TwitCivility as a data frame with the following fields:
**text**: This field contains the text (after preprocessing and anonymization) of the tweet.
**impoliteness**: A binary indicator (1 or 0) representing the presence of impoliteness in the text. A value of 1 signifies impoliteness, while 0 indicates non-impoliteness.
**intolerance**: Similarly, this binary value denotes the presence of intolerance in the text, with 1 indicating intolerance and 0 signifying non-intolerance.
## Citation Information ``` @misc{incivility2023, title={Detecting Multidimensional Political Incivility on Social Media}, author={Sagi Pendzel and Nir Lotan and Alon Zoizner and Einat Minkov}, year={2023}, eprint={2305.14964}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```