Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
sentiment-classification
Size:
10K - 100K
ArXiv:
License:
File size: 4,386 Bytes
b18e3ae e06fd67 b18e3ae e06fd67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
import pandas as pd
_LOCAL = False
_LANGUAGES = ["ind", "ace", "ban", "bjn", "bbc", "bug", "jav", "mad", "min", "nij", "sun", "eng"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_CITATION = """\
@misc{winata2022nusax,
title={NusaX: Multilingual Parallel Sentiment Dataset for 10 Indonesian Local Languages},
author={Winata, Genta Indra and Aji, Alham Fikri and Cahyawijaya,
Samuel and Mahendra, Rahmad and Koto, Fajri and Romadhony,
Ade and Kurniawan, Kemal and Moeljadi, David and Prasojo,
Radityo Eko and Fung, Pascale and Baldwin, Timothy and Lau,
Jey Han and Sennrich, Rico and Ruder, Sebastian},
year={2022},
eprint={2205.15960},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
_DESCRIPTION = """\
NusaX is a high-quality multilingual parallel corpus that covers 12 languages, Indonesian, English, and 10 Indonesian local languages, namely Acehnese, Balinese, Banjarese, Buginese, Madurese, Minangkabau, Javanese, Ngaju, Sundanese, and Toba Batak.
NusaX-Senti is a 3-labels (positive, neutral, negative) sentiment analysis dataset for 10 Indonesian local languages + Indonesian and English.
"""
_HOMEPAGE = "https://github.com/IndoNLP/nusax/tree/main/datasets/sentiment"
_LICENSE = "Creative Commons Attribution Share-Alike 4.0 International"
_SOURCE_VERSION = "1.0.0"
_URLS = {
"train": "https://raw.githubusercontent.com/IndoNLP/nusax/main/datasets/sentiment/{lang}/train.csv",
"validation": "https://raw.githubusercontent.com/IndoNLP/nusax/main/datasets/sentiment/{lang}/valid.csv",
"test": "https://raw.githubusercontent.com/IndoNLP/nusax/main/datasets/sentiment/{lang}/test.csv",
}
LANGUAGES_MAP = {
"ace": "acehnese",
"ban": "balinese",
"bjn": "banjarese",
"bug": "buginese",
"eng": "english",
"ind": "indonesian",
"jav": "javanese",
"mad": "madurese",
"min": "minangkabau",
"nij": "ngaju",
"sun": "sundanese",
"bbc": "toba_batak",
}
class NusaXSenti(datasets.GeneratorBasedBuilder):
"""NusaX-Senti is a 3-labels (positive, neutral, negative) sentiment analysis dataset for 10 Indonesian local languages + Indonesian and English."""
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name = lang,
version = _SOURCE_VERSION,
description = f"NusaX-Senti: Sentiment analysis dataset for {lang}")
for lang in LANGUAGES_MAP]
def _info(self) -> datasets.DatasetInfo:
features = datasets.Features(
{
"id": datasets.Value("string"),
"text": datasets.Value("string"),
"lang": datasets.Value("string"),
"label": datasets.ClassLabel(names=["negative", "neutral", "positive"]),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
lang = self.config.name
train_csv_path = Path(dl_manager.download_and_extract(_URLS["train"].format(lang=LANGUAGES_MAP[lang])))
validation_csv_path = Path(dl_manager.download_and_extract(_URLS["validation"].format(lang=LANGUAGES_MAP[lang])))
test_csv_path = Path(dl_manager.download_and_extract(_URLS["test"].format(lang=LANGUAGES_MAP[lang])))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": train_csv_path},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepath": validation_csv_path},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": test_csv_path},
),
]
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
df = pd.read_csv(filepath).reset_index()
for row in df.itertuples():
ex = {"id": str(row.id), "text": row.text, "label": row.label, "lang": self.config.name}
yield row.id, ex
|