File size: 2,068 Bytes
d3a579f bf3f8bb d3a579f bf3f8bb d3a579f bf3f8bb d3a579f bf3f8bb d3a579f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
#!/usr/bin/python3
# -*- coding: utf-8 -*-
from collections import defaultdict
import json
import os
from pathlib import Path
from project_settings import project_path
def main():
for subset in ["train", "test"]:
filename = project_path / "data/annotations/{}.json".format(subset)
with open(filename.as_posix(), "r", encoding="utf-8") as f:
js = json.load(f)
images = js["images"]
type_ = js["type"]
annotations = js["annotations"]
categories = js["categories"]
index_to_label = dict()
for category in categories:
index = category["id"]
name = category["name"]
index_to_label[index] = name
# print(images)
image_id_to_annotations = defaultdict(list)
for annotation in annotations:
image_id = annotation["image_id"]
image_id_to_annotations[image_id].append(annotation)
to_filename = project_path / "data/annotations/{}.jsonl".format(subset)
with open(to_filename.as_posix(), "w", encoding="utf-8") as f:
for image in images:
image_id = image["id"]
annotations = image_id_to_annotations[image_id]
image_path = Path("data/images") / image["file_name"]
row = {
"image_id": image["id"],
"image": image_path.as_posix(),
"width": image["width"],
"height": image["height"],
"objects": [
{
"id": annotation["id"],
"area": annotation["area"],
"bbox": annotation["bbox"],
"category": index_to_label[annotation["category_id"]],
} for annotation in annotations
]
}
row = json.dumps(row, ensure_ascii=False)
f.write("{}\n".format(row))
return
if __name__ == '__main__':
main()
|