lm_task / neox_model_old.py
iohadrubin's picture
Upload neox_model_old.py with huggingface_hub
931060f verified
raw
history blame contribute delete
No virus
32.8 kB
# coding=utf-8
# Copyright 2023 The EleutherAI and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Flax GPT NeoX model."""
from typing import Optional, Tuple
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen import combine_masks, make_causal_mask
from flax.linen.attention import dot_product_attention_weights
from flax.traverse_util import flatten_dict, unflatten_dict
from jax import lax
from transformers.modeling_flax_outputs import FlaxBaseModelOutput, FlaxCausalLMOutput
from transformers.modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring
from transformers.models.gpt_neox.configuration_gpt_neox import GPTNeoXConfig
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "EleutherAI/gpt-neox-20b"
_CONFIG_FOR_DOC = "GPTNeoXConfig"
GPT_NEOX_START_DOCSTRING = r"""
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a Flax nn
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`GPTNeoXConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
`jax.numpy.bfloat16` (on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given `dtype`.
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
parameters.**
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
[`~FlaxPreTrainedModel.to_bf16`].
"""
GPT_NEOX_INPUTS_DOCSTRING = r"""
Args:
input_ids (`numpy.ndarray` of shape `(batch_size, input_ids_length)`):
`input_ids_length` = `sequence_length`. Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
def rotate_half(hidden_states):
first_half = hidden_states[..., : hidden_states.shape[-1] // 2]
second_half = hidden_states[..., hidden_states.shape[-1] // 2 :]
return jnp.concatenate((-second_half, first_half), axis=-1)
class FlaxGPTNeoXRotaryEmbedding(nn.Module):
dim: int
max_position_embeddings: int
base: int = 10000
dtype: jnp.dtype = jnp.float32
def setup(self):
self.inv_freq = 1.0 / (self.base ** (jnp.arange(0, self.dim, 2).astype(self.dtype) / self.dim))
self.cos_cached, self.sin_cached = self._compute_cos_sin(self.max_position_embeddings)
def _get_cos_sin_cache(self, seq_len):
if seq_len > self.max_position_embeddings:
return self._compute_cos_sin(seq_len)
else:
return self.cos_cached, self.sin_cached
def _compute_cos_sin(self, seq_len):
t = jnp.arange(seq_len, dtype=self.inv_freq.dtype)
freqs = jnp.outer(t, self.inv_freq)
emb = jnp.concatenate((freqs, freqs), axis=-1)
cos = jnp.expand_dims(jnp.expand_dims(jnp.cos(emb), 0), 0)
sin = jnp.expand_dims(jnp.expand_dims(jnp.sin(emb), 0), 0)
return cos, sin
def __call__(self, seq_len=None):
cos_cached, sin_cached = self._get_cos_sin_cache(seq_len)
return cos_cached[:seq_len, ...], sin_cached[:seq_len, ...]
class FlaxGPTNeoXLinearScalingRotaryEmbedding(FlaxGPTNeoXRotaryEmbedding):
"""FlaxGPTNeoXRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
scaling_factor: float = 1.0
def _compute_cos_sin(self, seq_len):
t = jnp.arange(seq_len, dtype=self.inv_freq.dtype)
t = t / self.scaling_factor
freqs = jnp.outer(t, self.inv_freq)
emb = jnp.concatenate((freqs, freqs), axis=-1)
cos = jnp.expand_dims(jnp.expand_dims(jnp.cos(emb), 0), 0)
sin = jnp.expand_dims(jnp.expand_dims(jnp.sin(emb), 0), 0)
return cos, sin
class FlaxGPTNeoXDynamicNTKScalingRotaryEmbedding(FlaxGPTNeoXRotaryEmbedding):
"""FlaxGPTNeoXRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
scaling_factor: float = 1.0
def _compute_cos_sin(self, seq_len):
if seq_len > self.max_position_embeddings:
base = self.base * (
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
) ** (self.dim / (self.dim - 2))
inv_freq = 1.0 / (base ** (jnp.arange(0, self.dim, 2, dtype=self.dtype) / self.dim))
else:
inv_freq = self.inv_freq
t = jnp.arange(seq_len, dtype=self.dtype)
freqs = jnp.outer(t, inv_freq)
emb = jnp.concatenate((freqs, freqs), axis=-1)
cos = jnp.expand_dims(jnp.expand_dims(jnp.cos(emb), 0), 0)
sin = jnp.expand_dims(jnp.expand_dims(jnp.sin(emb), 0), 0)
return cos, sin
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
gather_indices = position_ids[:, :, None, None] # [bs, seq_len, 1, 1]
gather_indices = jnp.repeat(gather_indices, cos.shape[1], axis=1)
gather_indices = jnp.repeat(gather_indices, cos.shape[3], axis=3)
cos = jnp.take_along_axis(cos.repeat(gather_indices.shape[0], axis=0), gather_indices, axis=2)
sin = jnp.take_along_axis(sin.repeat(gather_indices.shape[0], axis=0), gather_indices, axis=2)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class FlaxGPTNeoXAttention(nn.Module):
config: GPTNeoXConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
config = self.config
self.num_attention_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.head_size = self.hidden_size // self.num_attention_heads
self.rotary_ndims = int(self.head_size * config.rotary_pct)
self.norm_factor = jnp.sqrt(self.head_size)
self.query_key_value = nn.Dense(
3 * config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.dense = nn.Dense(
config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
if config.rope_scaling is None:
max_seq_length = config.max_position_embeddings
else:
max_seq_length = int(config.max_position_embeddings * config.rope_scaling["factor"])
self.causal_mask = make_causal_mask(jnp.ones((1, max_seq_length), dtype="bool"), dtype="bool")
self._init_rope()
def _init_rope(self):
if self.config.rope_scaling is None:
self.rotary_emb = FlaxGPTNeoXRotaryEmbedding(
self.rotary_ndims, self.config.max_position_embeddings, base=self.config.rotary_emb_base
)
else:
scaling_type = self.config.rope_scaling["type"]
scaling_factor = self.config.rope_scaling["factor"]
if scaling_type == "linear":
self.rotary_emb = FlaxGPTNeoXLinearScalingRotaryEmbedding(
self.rotary_ndims,
self.config.max_position_embeddings,
base=self.config.rotary_emb_base,
scaling_factor=scaling_factor,
)
elif scaling_type == "dynamic":
self.rotary_emb = FlaxGPTNeoXDynamicNTKScalingRotaryEmbedding(
self.rotary_ndims,
self.config.max_position_embeddings,
base=self.config.rotary_emb_base,
scaling_factor=scaling_factor,
)
else:
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
@nn.compact
# Copied from transformers.models.gpt_neo.modeling_flax_gpt_neo.FlaxGPTNeoSelfAttention._concatenate_to_cache
def _concatenate_to_cache(self, key, value, query, attention_mask):
"""
This function takes projected key, value states from a single input token and concatenates the states to cached
states from previous steps. This function is slighly adapted from the official Flax repository:
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
"""
# detect if we're initializing by absence of existing cache data.
is_initialized = self.has_variable("cache", "cached_key")
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
if is_initialized:
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
# update key, value caches with our new 1d spatial slices
cur_index = cache_index.value
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
key = lax.dynamic_update_slice(cached_key.value, key, indices)
value = lax.dynamic_update_slice(cached_value.value, value, indices)
cached_key.value = key
cached_value.value = value
num_updated_cache_vectors = query.shape[1]
cache_index.value = cache_index.value + num_updated_cache_vectors
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
pad_mask = jnp.broadcast_to(
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
)
attention_mask = combine_masks(pad_mask, attention_mask)
return key, value, attention_mask
def _split_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:-1] + (self.num_attention_heads, self.head_size * 3))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.hidden_size,))
def __call__(
self,
hidden_states,
attention_mask,
position_ids,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
):
qkv = self.query_key_value(hidden_states)
batch, seq_len, _ = qkv.shape
# proj q, k, v
fused_qkv = self.query_key_value(hidden_states)
fused_qkv = self._split_heads(fused_qkv)
query, key, value = jnp.split(fused_qkv, 3, axis=-1)
cos, sin = self.rotary_emb(seq_len)
if self.rotary_ndims is not None:
k_rot = key[..., : self.rotary_ndims]
k_pass = key[..., self.rotary_ndims :]
q_rot = query[..., : self.rotary_ndims]
q_pass = query[..., self.rotary_ndims :]
q_rot, k_rot = apply_rotary_pos_emb(q_rot, k_rot, cos, sin, position_ids)
key = jnp.concatenate([k_rot, k_pass], axis=-1)
query = jnp.concatenate([q_rot, q_pass], axis=-1)
else:
query, key = apply_rotary_pos_emb(query, key, cos, sin, position_ids)
query_length, key_length = query.shape[1], key.shape[1]
if self.has_variable("cache", "cached_key"):
mask_shift = self.variables["cache"]["cache_index"]
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
causal_mask = lax.dynamic_slice(
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
)
else:
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
causal_mask = jnp.broadcast_to(causal_mask, (batch,) + causal_mask.shape[1:])
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
attention_mask = combine_masks(attention_mask, causal_mask)
dropout_rng = None
if not deterministic and self.config.attention_dropout > 0.0:
dropout_rng = self.make_rng("dropout")
# During fast autoregressive decoding, we feed one position at a time,
# and cache the keys and values step by step.
if self.has_variable("cache", "cached_key") or init_cache:
key, value, attention_mask = self._concatenate_to_cache(key, value, query, attention_mask)
# transform boolean mask into float mask
attention_bias = lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
)
attn_weights = dot_product_attention_weights(
query,
key,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.config.attention_dropout,
deterministic=deterministic,
dtype=jnp.promote_types(self.dtype, jnp.float32),
precision=None,
)
attn_output = jnp.einsum("bhqk,bkhd->bqhd", attn_weights, value)
attn_output = self._merge_heads(attn_output)
attn_output = self.dense(attn_output)
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
return outputs
class FlaxGPTNeoXMLP(nn.Module):
config: GPTNeoXConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
embed_dim = self.config.hidden_size
kernel_init = jax.nn.initializers.normal(self.config.initializer_range)
self.dense_h_to_4h = nn.Dense(self.config.intermediate_size, dtype=self.dtype, kernel_init=kernel_init)
self.dense_4h_to_h = nn.Dense(embed_dim, dtype=self.dtype, kernel_init=kernel_init)
self.act = ACT2FN[self.config.hidden_act]
def __call__(self, hidden_states):
hidden_states = self.dense_h_to_4h(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.dense_4h_to_h(hidden_states)
return hidden_states
class FlaxGPTNeoXBlock(nn.Module):
config: GPTNeoXConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.use_parallel_residual = self.config.use_parallel_residual
self.input_layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.attention = FlaxGPTNeoXAttention(self.config, dtype=self.dtype)
self.post_attention_dropout = nn.Dropout(rate=self.config.hidden_dropout)
self.post_attention_layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.mlp = FlaxGPTNeoXMLP(self.config, dtype=self.dtype)
self.post_mlp_dropout = nn.Dropout(rate=self.config.hidden_dropout)
def __call__(
self,
hidden_states,
attention_mask=None,
position_ids=None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
):
attn_outputs = self.attention(
self.input_layernorm(hidden_states),
attention_mask=attention_mask,
position_ids=position_ids,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
)
attn_output = attn_outputs[0]
attn_output = self.post_attention_dropout(attn_output, deterministic=deterministic)
if self.use_parallel_residual:
# pseudocode:
# x = x + attn(ln1(x)) + mlp(ln2(x))
mlp_output = self.mlp(self.post_attention_layernorm(hidden_states))
mlp_output = self.post_mlp_dropout(mlp_output, deterministic=deterministic)
hidden_states = mlp_output + attn_output + hidden_states
else:
# pseudocode:
# x = x + attn(ln1(x))
# x = x + mlp(ln2(x))
attn_output = attn_output + hidden_states
mlp_output = self.mlp(self.post_attention_layernorm(attn_output))
mlp_output = self.post_mlp_dropout(mlp_output, deterministic=deterministic)
hidden_states = mlp_output + attn_output
return (hidden_states,) + attn_outputs[1:]
class FlaxGPTNeoXPreTrainedModel(FlaxPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = GPTNeoXConfig
base_model_prefix = "gpt_neox"
module_class: nn.Module = None
# Copied from transformers.models.gpt_neo.modeling_flax_gpt_neo.FlaxGPTNeoPreTrainedModel.__init__ with GPTNeo->GPTNeoX
def __init__(
self,
config: GPTNeoXConfig,
input_shape: Tuple = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
# Copied from transformers.models.gpt_neo.modeling_flax_gpt_neo.FlaxGPTNeoPreTrainedModel.init_weights with GPTNeo->GPTNeoX
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
attention_mask = jnp.ones_like(input_ids)
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
random_params = self.module.init(rngs, input_ids, attention_mask, position_ids, return_dict=False)["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
# Copied from transformers.models.gpt_neo.modeling_flax_gpt_neo.FlaxGPTNeoPreTrainedModel.init_cache
def init_cache(self, batch_size, max_length):
r"""
Args:
batch_size (`int`):
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
max_length (`int`):
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
cache.
"""
# init input variables to retrieve cache
input_ids = jnp.ones((batch_size, max_length))
attention_mask = jnp.ones_like(input_ids)
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
init_variables = self.module.init(
jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
)
return unfreeze(init_variables["cache"])
@add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING)
def __call__(
self,
input_ids,
attention_mask=None,
position_ids=None,
params: dict = None,
past_key_values: dict = None,
dropout_rng: jax.random.PRNGKey = None,
train: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
batch_size, sequence_length = input_ids.shape
if position_ids is None:
if past_key_values is not None:
raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.")
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
if attention_mask is None:
attention_mask = jnp.ones((batch_size, sequence_length))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be changed by FlaxGPTNeoXAttention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
outputs = self.module.apply(
inputs,
jnp.array(input_ids, dtype="i4"),
jnp.array(attention_mask, dtype="i4"),
jnp.array(position_ids, dtype="i4"),
not train,
False,
output_attentions,
output_hidden_states,
return_dict,
rngs=rngs,
mutable=mutable,
)
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs, past_key_values = outputs
outputs["past_key_values"] = unfreeze(past_key_values["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs, past_key_values = outputs
outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
return outputs
class FlaxGPTNeoXBlockCollection(nn.Module):
config: GPTNeoXConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.blocks = [
FlaxGPTNeoXBlock(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers)
]
def __call__(
self,
hidden_states,
attention_mask=None,
position_ids=None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for block in self.blocks:
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = block(
hidden_states,
attention_mask,
position_ids=position_ids,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions += (layer_outputs[1],)
# this contains possible `None` values - `FlaxGPTNeoXModule` will filter them out
outputs = (hidden_states, all_hidden_states, all_attentions)
return outputs
class FlaxGPTNeoXModule(nn.Module):
config: GPTNeoXConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.embed_dim = self.config.hidden_size
self.embed_in = nn.Embed(
self.config.vocab_size,
self.config.hidden_size,
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
self.emb_dropout = nn.Dropout(self.config.hidden_dropout)
self.layers = FlaxGPTNeoXBlockCollection(self.config, dtype=self.dtype)
self.final_layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask=None,
position_ids=None,
deterministic=True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
input_embeds = self.embed_in(input_ids.astype("i4"))
hidden_states = self.emb_dropout(input_embeds, deterministic=deterministic)
outputs = self.layers(
hidden_states,
attention_mask,
position_ids=position_ids,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.final_layer_norm(hidden_states)
if output_hidden_states:
all_hidden_states = outputs[1] + (hidden_states,)
outputs = (hidden_states, all_hidden_states) + outputs[2:]
else:
outputs = (hidden_states,) + outputs[1:]
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=outputs[1],
attentions=outputs[-1],
)
@add_start_docstrings(
"The bare GPTNeoX Model transformer outputting raw hidden-states without any specific head on top.",
GPT_NEOX_START_DOCSTRING,
)
class FlaxGPTNeoXModel(FlaxGPTNeoXPreTrainedModel):
module_class = FlaxGPTNeoXModule
append_call_sample_docstring(
FlaxGPTNeoXModel,
_CHECKPOINT_FOR_DOC,
FlaxCausalLMOutput,
_CONFIG_FOR_DOC,
)
class FlaxGPTNeoXForCausalLMModule(nn.Module):
config: GPTNeoXConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.gpt_neox = FlaxGPTNeoXModule(self.config, dtype=self.dtype)
self.embed_out = nn.Dense(
self.config.vocab_size,
dtype=self.dtype,
use_bias=False,
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
def __call__(
self,
input_ids,
attention_mask=None,
position_ids=None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
outputs = self.gpt_neox(
input_ids,
attention_mask,
position_ids,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
lm_logits = self.embed_out(hidden_states)
if not return_dict:
return (lm_logits,) + outputs[1:]
return FlaxCausalLMOutput(logits=lm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
@add_start_docstrings(
"""
The GPTNeoX Model transformer with a language modeling head on top.
""",
GPT_NEOX_START_DOCSTRING,
)
# Copied from transformers.models.gpt_neo.modeling_flax_gpt_neo.FlaxGPTNeoForCausalLM with GPTNeo->GPTNeoX
class FlaxGPTNeoXForCausalLM(FlaxGPTNeoXPreTrainedModel):
module_class = FlaxGPTNeoXForCausalLMModule
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
# initializing the cache
batch_size, seq_length = input_ids.shape
past_key_values = self.init_cache(batch_size, max_length)
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
# But since GPTNeoX uses a causal mask, those positions are masked anyways.
# Thus we can create a single static attention_mask here, which is more efficient for compilation
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
if attention_mask is not None:
position_ids = attention_mask.cumsum(axis=-1) - 1
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
else:
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
return {
"past_key_values": past_key_values,
"attention_mask": extended_attention_mask,
"position_ids": position_ids,
}
def update_inputs_for_generation(self, model_outputs, model_kwargs):
model_kwargs["past_key_values"] = model_outputs.past_key_values
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
return model_kwargs
append_call_sample_docstring(
FlaxGPTNeoXForCausalLM,
_CHECKPOINT_FOR_DOC,
FlaxCausalLMOutput,
_CONFIG_FOR_DOC,
)