# CNN - Tifinagh-MNIST ## Libraries """ import numpy as np import os import cv2 from matplotlib import pyplot as plt from tensorflow import keras from keras.models import * from keras.layers import * from keras.utils import * from tensorflow.keras.utils import to_categorical from keras.utils.vis_utils import plot_model """## Data loading and adaptation """ def upload_data(path_name, number_of_class, number_of_images): X_Data = [] Y_Data = [] for i in range(number_of_class): images = os.listdir(path_name + str(i)) for j in range(number_of_images): img = cv2.imread(path_name + str(i)+ '/' + images[j], 0) X_Data.append(img) Y_Data.append(i) print("> the " + str(i) + "-th file is successfully uploaded.", end='\r') return np.array(X_Data), np.array(Y_Data) n_class = 33 n_train = 2000 n_test = 500 #here we upload our data (Tifinagh data) x_train, y_train = upload_data('drive/MyDrive/DATA2/train_data/', n_class, n_train) x_test, y_test = upload_data('drive/MyDrive/DATA2/test_data/', n_class, n_test) print("The x_train's shape is :", x_train.shape) print("The x_test's shape is :", x_test.shape) print("The y_train's shape is :", y_train.shape) print("The y_test's shape is :", y_test.shape) def plot_data(num=3): fig, axes = plt.subplots(1, num, figsize=(12, 8)) for i in range(num): index = np.random.randint(len(x_test)) axes[i].imshow(np.reshape(x_test[index], (28, 28))) axes[i].set_title('image label: %d' % y_test[index]) axes[i].axis('off') plt.show() plot_data(num=5) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 print('x_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') y_train = to_categorical(y_train, n_class) y_test = to_categorical(y_test, n_class) """## Architecture of the model""" def define_model(input_size = (28, 28, 1)): inputs = Input(input_size) conv1 = Conv2D(128, 3, activation='relu', padding='same')(inputs) conv1 = Conv2D(128, 3, activation='relu', padding='same')(conv1) pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) conv3 = Conv2D(64, 3, activation='relu', padding='same')(pool1) conv3 = Conv2D(64, 3, activation='relu', padding='same')(conv3) pool3 = MaxPooling2D(pool_size=(2, 2))(conv3) conv4 = Conv2D(32, 3, activation='relu', padding='same')(pool3) fltt = Flatten()(conv4) dan = Dense(33, activation='softmax')(fltt) model = Model(inputs=inputs, outputs=dan) model.compile(loss='categorical_crossentropy', optimizer=tf.keras.optimizers.Adam(), metrics=['accuracy']) return model model = define_model((28, 28, 1)) model.summary() his = model.fit(x_train, y_train, epochs=10, batch_size=128, validation_data=(x_test, y_test)) """## Model prediction on test data after training""" def plot_predictions(model, num=3): fig, axes = plt.subplots(1, num, figsize=(12, 8)) for i in range(num): index = np.random.randint(len(y_test)) pred = np.argmax(model.predict(np.reshape(x_test[index], (1, 28, 28)))) axes[i].imshow(np.reshape(x_test[index], (28, 28))) axes[i].set_title('Predicted label: '+ str(pred) + '\n/ true label :'+ str([e for e, x in enumerate(y_test[index]) if x == 1][0])) axes[i].axis('off') plt.show() plot_predictions(model, num=5) score = model.evaluate(x_test, y_test, verbose = 0) print('Test loss:', score[0]) print('Test accuracy:', score[1]) import matplotlib.pyplot as plt import numpy as np with plt.xkcd(): plt.plot(his.history['accuracy'], color='c') plt.plot(his.history['val_accuracy'], color='red') plt.title('Tifinagh-MNIST model accuracy') plt.legend(['acc', 'val_acc']) plt.savefig('acc_Tifinagh_MNIST_cnn.png') plt.show() with plt.xkcd(): plt.plot(his.history['loss'], color='c') plt.plot(his.history['val_loss'], color='red') plt.title('Tifinagh-MNIST model loss') plt.legend(['loss', 'val_loss']) plt.savefig('loss_Tifinagh_MNIST_cnn.png') plt.show()