|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Hate Speech Text Classification Dataset in Filipino.""" |
|
|
|
import csv |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_DESCRIPTION = """\ |
|
Contains 10k tweets (training set) that are labeled as hate speech or non-hate speech. Released with 4,232 validation and 4,232 testing samples. Collected during the 2016 Philippine Presidential Elections. |
|
""" |
|
|
|
_CITATION = """\ |
|
@article{Cabasag-2019-hate-speech, |
|
title={Hate speech in Philippine election-related tweets: Automatic detection and classification using natural language processing.}, |
|
author={Neil Vicente Cabasag, Vicente Raphael Chan, Sean Christian Lim, Mark Edward Gonzales, and Charibeth Cheng}, |
|
journal={Philippine Computing Journal}, |
|
volume={XIV}, |
|
number={1}, |
|
month={August}, |
|
year={2019} |
|
} |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/jcblaisecruz02/Filipino-Text-Benchmarks" |
|
|
|
|
|
_LICENSE = "" |
|
|
|
_URL = "https://huggingface.co/datasets/jcblaise/hatespeech_filipino/resolve/main/hatespeech_raw.zip" |
|
|
|
|
|
class HateSpeechFilipino(datasets.GeneratorBasedBuilder): |
|
"""Hate Speech Text Classification Dataset in Filipino.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
|
|
features = datasets.Features( |
|
{"text": datasets.Value("string"), "label": datasets.features.ClassLabel(names=["0", "1"])} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
data_dir = dl_manager.download_and_extract(_URL) |
|
train_path = os.path.join(data_dir, "hatespeech", "train.csv") |
|
test_path = os.path.join(data_dir, "hatespeech", "test.csv") |
|
validation_path = os.path.join(data_dir, "hatespeech", "valid.csv") |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": train_path, |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": test_path, |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": validation_path, |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
"""Yields examples.""" |
|
with open(filepath, encoding="utf-8") as csv_file: |
|
csv_reader = csv.reader( |
|
csv_file, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True |
|
) |
|
next(csv_reader) |
|
for id_, row in enumerate(csv_reader): |
|
try: |
|
text, label = row |
|
yield id_, {"text": text, "label": label} |
|
except ValueError: |
|
pass |