Datasets:
Tasks:
Text Classification
Sub-tasks:
natural-language-inference
Languages:
Tagalog
Size:
100K<n<1M
ArXiv:
License:
File size: 5,401 Bytes
f25be5d ed49445 f25be5d ed49445 f25be5d d0ee1ac 2f2f25c 05d606e 7b551f6 05d606e c542eb7 05d606e f25be5d d0ee1ac f25be5d d0ee1ac f25be5d 763f1b6 f25be5d a07178f f25be5d a07178f f25be5d 763f1b6 05d606e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
---
annotations_creators:
- machine-generated
language_creators:
- found
language:
- tl
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- natural-language-inference
paperswithcode_id: newsph-nli
pretty_name: NewsPH NLI
dataset_info:
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': '0'
'1': '1'
splits:
- name: train
num_bytes: 154510599
num_examples: 420000
- name: test
num_bytes: 3283665
num_examples: 9000
- name: validation
num_bytes: 33015530
num_examples: 90000
download_size: 76565287
dataset_size: 190809794
---
# Dataset Card for NewsPH NLI
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [NewsPH NLI homepage](https://github.com/jcblaisecruz02/Filipino-Text-Benchmarks)
- **Repository:** [NewsPH NLI repository](https://github.com/jcblaisecruz02/Filipino-Text-Benchmarks)
- **Paper:** [Arxiv paper](https://arxiv.org/pdf/2010.11574.pdf)
- **Leaderboard:**
- **Point of Contact:** [Jan Christian Cruz](mailto:[email protected])
### Dataset Summary
First benchmark dataset for sentence entailment in the low-resource Filipino language. Constructed through exploting the structure of news articles. Contains 600,000 premise-hypothesis pairs, in 70-15-15 split for training, validation, and testing.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
The dataset contains news articles in Filipino (Tagalog) scraped rom all major Philippine news sites online.
## Dataset Structure
### Data Instances
Sample data:
{
"premise": "Alam ba ninyo ang ginawa ni Erap na noon ay lasing na lasing na rin?",
"hypothesis": "Ininom niya ang alak na pinagpulbusan!",
"label": "0"
}
### Data Fields
[More Information Needed]
### Data Splits
Contains 600,000 premise-hypothesis pairs, in 70-15-15 split for training, validation, and testing.
## Dataset Creation
### Curation Rationale
We propose the use of news articles for automatically creating benchmark datasets for NLI because of two reasons. First, news articles commonly use single-sentence paragraphing, meaning every paragraph in a news article is limited to a single sentence. Second, straight news articles follow the “inverted pyramid” structure, where every succeeding paragraph builds upon the premise of those that came before it, with the most important information on top and the least important towards the end.
### Source Data
#### Initial Data Collection and Normalization
To create the dataset, we scrape news articles from all major Philippine news sites online. We collect a total of 229,571 straight news articles, which we then lightly preprocess to remove extraneous unicode characters and correct minimal misspellings. No further preprocessing is done to preserve information in the data.
#### Who are the source language producers?
The dataset was created by Jan Christian, Blaise Cruz, Jose Kristian Resabal, James Lin, Dan John Velasco, and Charibeth Cheng from De La Salle University and the University of the Philippines
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
Jan Christian Blaise Cruz, Jose Kristian Resabal, James Lin, Dan John Velasco and Charibeth Cheng
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[Jan Christian Blaise Cruz] (mailto:jan_christian_[email protected])
### Licensing Information
[More Information Needed]
### Citation Information
@article{cruz2020investigating,
title={Investigating the True Performance of Transformers in Low-Resource Languages: A Case Study in Automatic Corpus Creation},
author={Jan Christian Blaise Cruz and Jose Kristian Resabal and James Lin and Dan John Velasco and Charibeth Cheng},
journal={arXiv preprint arXiv:2010.11574},
year={2020}
}
### Contributions
Thanks to [@anaerobeth](https://github.com/anaerobeth) for adding this dataset. |