Datasets:
Tasks:
Text Classification
Sub-tasks:
natural-language-inference
Languages:
Tagalog
Size:
100K<n<1M
ArXiv:
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""NewsPH-NLI Sentence Entailment Dataset in Filipino""" | |
import csv | |
import os | |
import datasets | |
_DESCRIPTION = """\ | |
First benchmark dataset for sentence entailment in the low-resource Filipino language. | |
Constructed through exploting the structure of news articles. Contains 600,000 premise-hypothesis pairs, | |
in 70-15-15 split for training, validation, and testing. | |
""" | |
_CITATION = """\ | |
@article{cruz2020investigating, | |
title={Investigating the True Performance of Transformers in Low-Resource Languages: A Case Study in Automatic Corpus Creation}, | |
author={Jan Christian Blaise Cruz and Jose Kristian Resabal and James Lin and Dan John Velasco and Charibeth Cheng}, | |
journal={arXiv preprint arXiv:2010.11574}, | |
year={2020} | |
} | |
""" | |
_HOMEPAGE = "https://github.com/jcblaisecruz02/Filipino-Text-Benchmarks" | |
# TODO: Add the licence for the dataset here if you can find it | |
_LICENSE = "Filipino-Text-Benchmarks is licensed under the GNU General Public License v3.0" | |
_URL = "https://s3.us-east-2.amazonaws.com/blaisecruz.com/datasets/newsph/newsph-nli.zip" | |
class NewsphNli(datasets.GeneratorBasedBuilder): | |
"""NewsPH-NLI Sentence Entailment Dataset in Filipino""" | |
VERSION = datasets.Version("1.0.0") | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"premise": datasets.Value("string"), | |
"hypothesis": datasets.Value("string"), | |
"label": datasets.features.ClassLabel(names=["0", "1"]), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
data_dir = dl_manager.download_and_extract(_URL) | |
download_path = os.path.join(data_dir, "newsph-nli") | |
train_path = os.path.join(download_path, "train.csv") | |
test_path = os.path.join(download_path, "test.csv") | |
validation_path = os.path.join(download_path, "valid.csv") | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": train_path, | |
"split": "train", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"filepath": test_path, | |
"split": "test", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"filepath": validation_path, | |
"split": "dev", | |
}, | |
), | |
] | |
def _generate_examples(self, filepath, split): | |
"""Yields examples.""" | |
with open(filepath, encoding="utf-8") as csv_file: | |
csv_reader = csv.reader( | |
csv_file, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True | |
) | |
next(csv_reader) | |
for id_, row in enumerate(csv_reader): | |
premise, hypothesis, label = row | |
yield id_, {"premise": premise, "hypothesis": hypothesis, "label": label} | |