# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """NewsPH-NLI Sentence Entailment Dataset in Filipino""" import csv import os import datasets _DESCRIPTION = """\ First benchmark dataset for sentence entailment in the low-resource Filipino language. Constructed through exploting the structure of news articles. Contains 600,000 premise-hypothesis pairs, in 70-15-15 split for training, validation, and testing. """ _CITATION = """\ @article{cruz2020investigating, title={Investigating the True Performance of Transformers in Low-Resource Languages: A Case Study in Automatic Corpus Creation}, author={Jan Christian Blaise Cruz and Jose Kristian Resabal and James Lin and Dan John Velasco and Charibeth Cheng}, journal={arXiv preprint arXiv:2010.11574}, year={2020} } """ _HOMEPAGE = "https://github.com/jcblaisecruz02/Filipino-Text-Benchmarks" # TODO: Add the licence for the dataset here if you can find it _LICENSE = "Filipino-Text-Benchmarks is licensed under the GNU General Public License v3.0" _URL = "https://huggingface.co/datasets/jcblaise/newsph_nli/resolve/main/newsph-nli.zip" class NewsphNli(datasets.GeneratorBasedBuilder): """NewsPH-NLI Sentence Entailment Dataset in Filipino""" VERSION = datasets.Version("1.0.0") def _info(self): features = datasets.Features( { "premise": datasets.Value("string"), "hypothesis": datasets.Value("string"), "label": datasets.features.ClassLabel(names=["0", "1"]), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" data_dir = dl_manager.download_and_extract(_URL) download_path = os.path.join(data_dir, "newsph-nli") train_path = os.path.join(download_path, "train.csv") test_path = os.path.join(download_path, "test.csv") validation_path = os.path.join(download_path, "valid.csv") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": train_path, "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": test_path, "split": "test", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": validation_path, "split": "dev", }, ), ] def _generate_examples(self, filepath, split): """Yields examples.""" with open(filepath, encoding="utf-8") as csv_file: csv_reader = csv.reader( csv_file, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True ) next(csv_reader) for id_, row in enumerate(csv_reader): premise, hypothesis, label = row yield id_, {"premise": premise, "hypothesis": hypothesis, "label": label}