# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Loader script for the GermEval 18 dataset""" import csv import json import os import datasets _CITATION = """\ @data{data/0B5VML_2019, author = {Wiegand, Michael}, publisher = {heiDATA}, title = {{GermEval-2018 Corpus (DE)}}, year = {2019}, version = {V1}, doi = {10.11588/data/0B5VML}, url = {https://doi.org/10.11588/data/0B5VML} } """ _DESCRIPTION = """\ This dataset comprises the training and test data (German tweets) from the GermEval 2018 Shared on Offensive Language Detection. """ _HOMEPAGE = "https://doi.org/10.11588/data/0B5VML" _LICENSE = "CC-BY-4.0 Deed" # The files are pulled from the official GitHub repository. # https://github.com/uds-lsv/GermEval-2018-Data # We use the hashed URL from master branch / June 3th 2024. _URLS = { "germeval18.test.txt": "https://raw.githubusercontent.com/uds-lsv/GermEval-2018-Data/9877472d39523effd54cd079b4c61157ed141508/germeval2018.test.txt", "germeval18.train.txt": "https://raw.githubusercontent.com/uds-lsv/GermEval-2018-Data/9877472d39523effd54cd079b4c61157ed141508/germeval2018.training.txt", } class GermEval18(datasets.GeneratorBasedBuilder): """The GermEval18 dataset""" VERSION = datasets.Version("1.1.0") def _info(self): features = datasets.Features( { "text": datasets.Value("string"), 'coarse': datasets.ClassLabel(num_classes=2, names=['OTHER', 'OFFENSE'], names_file=None, id=None), 'fine': datasets.ClassLabel(num_classes=4, names=['OTHER', 'ABUSE', 'INSULT', 'PROFANITY'], names_file=None, id=None), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): downloaded_files = dl_manager.download(_URLS) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": downloaded_files["germeval18.train.txt"], "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": downloaded_files["germeval18.test.txt"], "split": "test" }, ), ] def _generate_examples(self, filepath, split): with open(filepath, encoding="utf-8") as f: for key, row in enumerate(f): # Every line only has two "\t" tabs. data_text, lbl_coarse, lbl_fine = row.rstrip().split("\t") yield key, { "text": data_text, "coarse": lbl_coarse, "fine": lbl_fine, }