add datasets script
Browse files- binding_affinity.py +164 -0
binding_affinity.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""TODO: A dataset of protein sequences, ligand SMILES and binding affinities."""
|
16 |
+
|
17 |
+
import pandas
|
18 |
+
import os
|
19 |
+
|
20 |
+
import datasets
|
21 |
+
|
22 |
+
|
23 |
+
# TODO: Add BibTeX citation
|
24 |
+
# Find for instance the citation on arxiv or on the dataset repo/website
|
25 |
+
_CITATION = """\
|
26 |
+
@InProceedings{huggingface:dataset,
|
27 |
+
title = {jglaser/binding_affinity},
|
28 |
+
author={Jens Glaser, ORNL
|
29 |
+
},
|
30 |
+
year={2021}
|
31 |
+
}
|
32 |
+
"""
|
33 |
+
|
34 |
+
# TODO: Add description of the dataset here
|
35 |
+
# You can copy an official description
|
36 |
+
_DESCRIPTION = """\
|
37 |
+
A dataset to refine language models on protein-ligand binding affinity prediction.
|
38 |
+
"""
|
39 |
+
|
40 |
+
# TODO: Add a link to an official homepage for the dataset here
|
41 |
+
_HOMEPAGE = ""
|
42 |
+
|
43 |
+
# TODO: Add the licence for the dataset here if you can find it
|
44 |
+
_LICENSE = "BSD two-clause"
|
45 |
+
|
46 |
+
# TODO: Add link to the official dataset URLs here
|
47 |
+
# The HuggingFace dataset library don't host the datasets but only point to the original files
|
48 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
49 |
+
_URLs = {
|
50 |
+
'affinities': "https://huggingface.co/datasets/jglaser/binding_affinity/tree/main/data/all.parquet",
|
51 |
+
}
|
52 |
+
|
53 |
+
|
54 |
+
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
|
55 |
+
class BindingAffinity(datasets.ArrowBasedBuilder):
|
56 |
+
"""List of protein sequences, ligand SMILES and binding affinities."""
|
57 |
+
|
58 |
+
VERSION = datasets.Version("1.0.0")
|
59 |
+
|
60 |
+
# If you don't want/need to define several sub-sets in your dataset,
|
61 |
+
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
62 |
+
|
63 |
+
# If you need to make complex sub-parts in the datasets with configurable options
|
64 |
+
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
65 |
+
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
66 |
+
|
67 |
+
# You will be able to load one or the other configurations in the following list with
|
68 |
+
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
69 |
+
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
70 |
+
# BUILDER_CONFIGS = [
|
71 |
+
# datasets.BuilderConfig(name="first_domain", version=VERSION, description="This part of my dataset covers a first domain"),
|
72 |
+
# datasets.BuilderConfig(name="second_domain", version=VERSION, description="This part of my dataset covers a second domain"),
|
73 |
+
#]
|
74 |
+
|
75 |
+
DEFAULT_CONFIG_NAME = "affinities" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
76 |
+
|
77 |
+
def _info(self):
|
78 |
+
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
79 |
+
#if self.config.name == "first_domain": # This is the name of the configuration selected in BUILDER_CONFIGS above
|
80 |
+
# features = datasets.Features(
|
81 |
+
# {
|
82 |
+
# "sentence": datasets.Value("string"),
|
83 |
+
# "option1": datasets.Value("string"),
|
84 |
+
# "answer": datasets.Value("string")
|
85 |
+
# # These are the features of your dataset like images, labels ...
|
86 |
+
# }
|
87 |
+
# )
|
88 |
+
#else: # This is an example to show how to have different features for "first_domain" and "second_domain"
|
89 |
+
features = datasets.Features(
|
90 |
+
{
|
91 |
+
"affinity_uM": datasets.Value("float"),
|
92 |
+
"neg_log10_affinity_M": datasets.Value("float"),
|
93 |
+
# These are the features of your dataset like images, labels ...
|
94 |
+
}
|
95 |
+
)
|
96 |
+
return datasets.DatasetInfo(
|
97 |
+
# This is the description that will appear on the datasets page.
|
98 |
+
description=_DESCRIPTION,
|
99 |
+
# This defines the different columns of the dataset and their types
|
100 |
+
features=features, # Here we define them above because they are different between the two configurations
|
101 |
+
# If there's a common (input, target) tuple from the features,
|
102 |
+
# specify them here. They'll be used if as_supervised=True in
|
103 |
+
# builder.as_dataset.
|
104 |
+
supervised_keys=None,
|
105 |
+
# Homepage of the dataset for documentation
|
106 |
+
homepage=_HOMEPAGE,
|
107 |
+
# License for the dataset if available
|
108 |
+
license=_LICENSE,
|
109 |
+
# Citation for the dataset
|
110 |
+
citation=_CITATION,
|
111 |
+
)
|
112 |
+
|
113 |
+
def _split_generators(self, dl_manager):
|
114 |
+
"""Returns SplitGenerators."""
|
115 |
+
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
116 |
+
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
117 |
+
|
118 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
|
119 |
+
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
120 |
+
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
121 |
+
my_urls = _URLs[self.config.name]
|
122 |
+
data_dir = dl_manager.download_and_extract(my_urls)
|
123 |
+
return [
|
124 |
+
datasets.SplitGenerator(
|
125 |
+
name=datasets.Split.TRAIN,
|
126 |
+
# These kwargs will be passed to _generate_examples
|
127 |
+
gen_kwargs={
|
128 |
+
"filepath": os.path.join(data_dir, "train.parquet"),
|
129 |
+
"split": "train",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TEST,
|
134 |
+
# These kwargs will be passed to _generate_examples
|
135 |
+
gen_kwargs={
|
136 |
+
"filepath": os.path.join(data_dir, "test.parquet"),
|
137 |
+
"split": "test"
|
138 |
+
},
|
139 |
+
),
|
140 |
+
datasets.SplitGenerator(
|
141 |
+
name=datasets.Split.VALIDATION,
|
142 |
+
# These kwargs will be passed to _generate_examples
|
143 |
+
gen_kwargs={
|
144 |
+
"filepath": os.path.join(data_dir, "dev.parquet"),
|
145 |
+
"split": "dev",
|
146 |
+
},
|
147 |
+
),
|
148 |
+
]
|
149 |
+
|
150 |
+
def _generate_examples(
|
151 |
+
self, filepath, split # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
152 |
+
):
|
153 |
+
""" Yields examples as (key, example) tuples. """
|
154 |
+
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
155 |
+
# The `key` is here for legacy reason (tfds) and is not important in itself.
|
156 |
+
|
157 |
+
df = pd.read_parquet(filepath)
|
158 |
+
for k, row in df.iterrows():
|
159 |
+
yield id_, {
|
160 |
+
"seq": row["seq"],
|
161 |
+
"smiles": row["smiles"],
|
162 |
+
"neg_log10_affinity_M": row["neg_log10_affinity_M"],
|
163 |
+
"affinity_uM": row["affinity_uM"],
|
164 |
+
}
|