import dask.dataframe as dd import pandas as pd import sys import os import numpy as np from Bio.PDB import PDBList from Bio import SeqIO from rdkit import Chem import warnings def get_sequence(pdb_id): try: pdbfile = PDBList().retrieve_pdb_file(pdb_id.upper(),file_format='pdb',pdir='/tmp') seq = str(next(SeqIO.parse(pdbfile, "pdb-seqres")).seq) os.unlink(pdbfile) return seq except Exception as e: print(e) pass def make_canonical(smi): return Chem.MolToSmiles(Chem.MolFromSmiles(smi)) if __name__ == '__main__': import glob filenames = glob.glob(sys.argv[3]) seqs = [] smiles = [] active = [] targets = pd.read_csv(sys.argv[1],sep=' ',keep_default_na=False) for fn in filenames: df = pd.read_csv(fn,header=None,sep=' ') df[0] = df[0].apply(make_canonical) df[1] = df[1].apply(make_canonical) actives = df[0].unique() decoys = df[1].unique() smiles += actives.tolist()+decoys.tolist() active += [True]*len(actives) + [False]*len(decoys) split = os.path.basename(fn).split('-') target = split[2].upper() if len(split) > 5: target += '-'+split[3].upper() print(target) seq = get_sequence(targets[targets.name.str.upper()==target].pdb.values[0]) seqs += [seq]*(len(actives)+len(decoys)) ddf = dd.from_pandas(pd.DataFrame({'seq': seqs, 'smiles': smiles, 'active': active}),npartitions=1) ddf = ddf.repartition(partition_size='1M') ddf.to_parquet(sys.argv[2])