|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""ClarinPL Studio automatic speech recognition dataset.""" |
|
|
|
import os |
|
import glob |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@article{korvzinek2017polish, |
|
title={Polish read speech corpus for speech tools and services}, |
|
author={Kor{\v{z}}inek, Danijel and Marasek, Krzysztof and Brocki, {\L}ukasz and Wo{\l}k, Krzysztof}, |
|
journal={arXiv preprint arXiv:1706.00245}, |
|
year={2017} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The corpus consists of 317 speakers recorded in 554 |
|
sessions, where each session consists of 20 read sentences and 10 phonetically rich words. The size of |
|
the audio portion of the corpus amounts to around 56 hours, with transcriptions containing 356674 words |
|
from a vocabulary of size 46361. |
|
|
|
Note that in order to limit the required storage for preparing this dataset, the audio |
|
is stored in the .wav format and is not converted to a float32 array. To convert the audio |
|
file to a float32 array, please make use of the `.map()` function as follows: |
|
|
|
```python |
|
import soundfile as sf |
|
|
|
def map_to_array(batch): |
|
speech_array, _ = sf.read(batch["file"]) |
|
batch["speech"] = speech_array |
|
return batch |
|
|
|
dataset = dataset.map(map_to_array, remove_columns=["file"]) |
|
``` |
|
""" |
|
|
|
_URL = "https://mowa.clarin-pl.eu/" |
|
_DS_URL = "http://mowa.clarin-pl.eu/korpusy/audio.tar.gz" |
|
_TRAIN_URL = "https://raw.githubusercontent.com/danijel3/ClarinStudioKaldi/master/local_clarin/train.sessions" |
|
_TEST_URL = "https://raw.githubusercontent.com/danijel3/ClarinStudioKaldi/master/local_clarin/test.sessions" |
|
_VALID_URL = "https://raw.githubusercontent.com/danijel3/ClarinStudioKaldi/master/local_clarin/dev.sessions" |
|
|
|
class ClarinPLStudioASRConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for ClarinPLStudioASR.""" |
|
|
|
def __init__(self, **kwargs): |
|
""" |
|
Args: |
|
data_dir: `string`, the path to the folder containing the files in the |
|
downloaded .tar |
|
citation: `string`, citation for the data set |
|
url: `string`, url for information about the data set |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(ClarinPLStudioASRConfig, self).__init__(version=datasets.Version("2.1.0", ""), **kwargs) |
|
|
|
|
|
class ClarinPLStudio(datasets.GeneratorBasedBuilder): |
|
"""ClarinPL Studio dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
ClarinPLStudioASRConfig(name="clean", description="'Clean' speech."), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"file": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"speaker_id": datasets.Value("string"), |
|
"id": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=("file", "text"), |
|
homepage=_URL, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
def get_sessions(path): |
|
sessions = [] |
|
with open(path, 'r') as f: |
|
for line in f: |
|
sessions.append(line.strip()) |
|
return sessions |
|
archive_path = dl_manager.download_and_extract(_DS_URL) |
|
train_sessions_path = dl_manager.download(_TRAIN_URL) |
|
test_sessions_path = dl_manager.download(_TEST_URL) |
|
valid_sessions_path = dl_manager.download(_VALID_URL) |
|
|
|
train_sessions = get_sessions(train_sessions_path) |
|
test_sessions = get_sessions(test_sessions_path) |
|
valid_sessions = get_sessions(valid_sessions_path) |
|
|
|
archive_path = os.path.join(archive_path, "audio") |
|
return [ |
|
datasets.SplitGenerator(name="train", gen_kwargs={ |
|
"archive_path": archive_path, |
|
"sessions": train_sessions |
|
}), |
|
datasets.SplitGenerator(name="test", gen_kwargs={ |
|
"archive_path": archive_path, |
|
"sessions": test_sessions |
|
}), |
|
datasets.SplitGenerator(name="valid", gen_kwargs={ |
|
"archive_path": archive_path, |
|
"sessions": valid_sessions |
|
}), |
|
] |
|
|
|
def _generate_examples(self, archive_path, sessions): |
|
"""Generate examples from a ClarinPL Studio archive_path.""" |
|
def get_single_line(path): |
|
lines = [] |
|
with open(path, 'r', encoding="utf-8") as f: |
|
for line in f: |
|
line = line.strip() |
|
lines.append(line) |
|
assert(len(lines) == 1) |
|
return lines[0] |
|
for session in sessions: |
|
session_path = os.path.join(archive_path, session) |
|
speaker = get_single_line(os.path.join(session_path, "spk.txt")) |
|
text_glob = os.path.join(session_path, "*.txt") |
|
for text_file in sorted(glob.glob(text_glob)): |
|
if text_file.endswith("spk.txt"): |
|
continue |
|
basename = os.path.basename(text_file) |
|
basename = basename.replace('.txt', '') |
|
key = f'{session}_{basename}' |
|
text = get_single_line(text_file) |
|
audio = text_file.replace('.txt', '.wav') |
|
example = { |
|
"id": key, |
|
"speaker_id": speaker, |
|
"file": audio, |
|
"text": text, |
|
} |
|
yield key, example |
|
|