File size: 6,703 Bytes
0363a0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31ca8e7
0363a0b
 
31ca8e7
0363a0b
 
31ca8e7
 
 
0363a0b
 
 
31ca8e7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import os

import numpy as np
import pandas as pd

"""
Dataset url: https://github.com/lagefreitas/predicting-brazilian-court-decisions/blob/main/dataset.zip
Paper url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044329/

There are no splits available ==> Make random split ourselves

"""

pd.set_option('display.max_colwidth', None)
pd.set_option('display.max_columns', None)


def perform_original_preprocessing():
    # Original Preprocessing from: https://github.com/lagefreitas/predicting-brazilian-court-decisions/blob/main/predicting-brazilian-court-decisions.py#L81
    # Loading the labeled decisions
    data = pd.read_csv("dataset.csv", sep='<=>', header=0)
    print('data.shape=' + str(data.shape) + ' full data set')
    # Removing NA values
    data = data.dropna(subset=[data.columns[9]])  # decision_description
    data = data.dropna(subset=[data.columns[11]])  # decision_label
    print('data.shape=' + str(data.shape) + ' dropna')
    # Removing duplicated samples
    data = data.drop_duplicates(subset=[data.columns[1]])  # process_number
    print('data.shape=' + str(data.shape) + ' removed duplicated samples by process_number')
    data = data.drop_duplicates(subset=[data.columns[9]])  # decision_description
    print('data.shape=' + str(data.shape) + ' removed duplicated samples by decision_description')
    # Removing not relevant decision labels and decision not properly labeled
    data = data.query('decision_label != "conflito-competencia"')
    print('data.shape=' + str(data.shape) + ' removed decisions labeled as conflito-competencia')
    data = data.query('decision_label != "prejudicada"')
    print('data.shape=' + str(data.shape) + ' removed decisions labeled as prejudicada')
    data = data.query('decision_label != "not-cognized"')
    print('data.shape=' + str(data.shape) + ' removed decisions labeled as not-cognized')
    data_no = data.query('decision_label == "no"')
    print('data_no.shape=' + str(data_no.shape))
    data_yes = data.query('decision_label == "yes"')
    print('data_yes.shape=' + str(data_yes.shape))
    data_partial = data.query('decision_label == "partial"')
    print('data_partial.shape=' + str(data_partial.shape))
    # Merging decisions whose labels are yes, no, and partial to build the final data set
    data_merged = data_no.merge(data_yes, how='outer')
    data = data_merged.merge(data_partial, how='outer')
    print('data.shape=' + str(data.shape) + ' merged decisions whose labels are yes, no, and partial')
    # Removing decision_description and decision_labels whose values are -1 and -2
    indexNames = data[(data['decision_description'] == str(-1)) | (data['decision_description'] == str(-2)) | (
            data['decision_label'] == str(-1)) | (data['decision_label'] == str(-2))].index
    data.drop(indexNames, inplace=True)
    print('data.shape=' + str(data.shape) + ' removed -1 and -2 decision descriptions and labels')

    data.to_csv("dataset_processed_original.csv", index=False)


def perform_additional_processing():
    df = pd.read_csv("dataset_processed_original.csv")

    # remove strange " characters sometimes occurring in the beginning and at the end of a line
    df.ementa_filepath = df.ementa_filepath.str.replace('^"', '')
    df.decision_unanimity = df.decision_unanimity.str.replace('"$', '')

    # removing process_type and judgment_date, since they are the same everywhere (-)
    # decisions only contains 'None', nan and '-2'
    # ementa_filepath refers to the name of file in the filesystem that we created when we scraped the data from the Court. It is temporary data and can be removed
    # decision_description = ementa_text - decision_text - decision_unanimity_text
    df = df.drop(['process_type', 'judgment_date', 'decisions', 'ementa_filepath'], axis=1)

    # some rows are somehow not read correctly. With this, we can filter them
    df = df[df.decision_text.str.len() > 1]

    # rename "-2" to more descriptive name ==> -2 means, that they were not able to determine it
    df.decision_unanimity = df.decision_unanimity.replace('-2', 'not_determined')

    # rename cols for more clarity
    df = df.rename(columns={"decision_unanimity": "unanimity_label"})
    df = df.rename(columns={"decision_unanimity_text": "unanimity_text"})
    df = df.rename(columns={"decision_text": "judgment_text"})
    df = df.rename(columns={"decision_label": "judgment_label"})

    df.to_csv("dataset_processed_additional.csv", index=False)

    return df


perform_original_preprocessing()
df = perform_additional_processing()

# perform random split 80% train (3234), 10% validation (404), 10% test (405)
train, validation, test = np.split(df.sample(frac=1, random_state=42), [int(.8 * len(df)), int(.9 * len(df))])


def save_splits_to_jsonl(config_name):
    # save to jsonl files for huggingface
    if config_name: os.makedirs(config_name, exist_ok=True)
    train.to_json(os.path.join(config_name, "train.jsonl"), lines=True, orient="records", force_ascii=False)
    validation.to_json(os.path.join(config_name, "validation.jsonl"), lines=True, orient="records", force_ascii=False)
    test.to_json(os.path.join(config_name, "test.jsonl"), lines=True, orient="records", force_ascii=False)


def print_split_table_single_label(train, validation, test, label_name):
    train_counts = train[label_name].value_counts().to_frame().rename(columns={label_name: "train"})
    validation_counts = validation[label_name].value_counts().to_frame().rename(columns={label_name: "validation"})
    test_counts = test[label_name].value_counts().to_frame().rename(columns={label_name: "test"})

    table = train_counts.join(validation_counts)
    table = table.join(test_counts)
    table[label_name] = table.index
    total_row = {label_name: "total",
                 "train": len(train.index),
                 "validation": len(validation.index),
                 "test": len(test.index)}
    table = table.append(total_row, ignore_index=True)
    table = table[[label_name, "train", "validation", "test"]]  # reorder columns
    print(table.to_markdown(index=False))


save_splits_to_jsonl("")

print_split_table_single_label(train, validation, test, "judgment_label")
print_split_table_single_label(train, validation, test, "unanimity_label")

# create second config by filtering out rows with unanimity label == not_determined, while keeping the same splits
# train = train[train.unanimity_label != "not_determined"]
# validation = validation[validation.unanimity_label != "not_determined"]
# test = test[test.unanimity_label != "not_determined"]


# it is a very small dataset and very imbalanced (only very few not-unanimity labels)
# save_splits_to_jsonl("unanimity")