|
import datasets |
|
from datasets import load_dataset |
|
|
|
|
|
_CONSTITUENT_DATASETS = ['SAT-4', 'SAT-6', 'NASC-TG2', 'WHU-RS19', 'RSSCN7', 'RS_C11', 'SIRI-WHU', 'EuroSAT', |
|
'NWPU-RESISC45', 'PatternNet', 'RSD46-WHU', 'GID', 'CLRS', 'Optimal-31', |
|
'Airbus-Wind-Turbines-Patches', 'USTC_SmokeRS', 'Canadian_Cropland', |
|
'Ships-In-Satellite-Imagery', 'Satellite-Images-of-Hurricane-Damage', |
|
'Brazilian_Coffee_Scenes', 'Brazilian_Cerrado-Savanna_Scenes', 'Million-AID', |
|
'UC_Merced_LandUse_MultiLabel', 'MLRSNet', |
|
'MultiScene', 'RSI-CB256', 'AID_MultiLabel'] |
|
|
|
|
|
class SATINConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for SATIN""" |
|
|
|
def __init__(self, name, **kwargs): |
|
|
|
super(SATINConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs) |
|
self.name = name |
|
self.hf_dataset_name = 'jonathan-roberts1' + "/" + name |
|
self.description = None |
|
self.features = None |
|
|
|
|
|
class SATIN(datasets.GeneratorBasedBuilder): |
|
"""SATIN Images dataset""" |
|
|
|
BUILDER_CONFIGS = [SATINConfig(name=dataset_name) for dataset_name in _CONSTITUENT_DATASETS] |
|
|
|
def _info(self): |
|
if self.config.description is None or self.config.features is None: |
|
stream_dataset_info = load_dataset(self.config.hf_dataset_name, streaming=True, split='train').info |
|
self.config.description = stream_dataset_info.description |
|
self.config.features = stream_dataset_info.features |
|
return datasets.DatasetInfo( |
|
description=self.config.description, |
|
features=self.config.features, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
dataset = load_dataset(self.config.hf_dataset_name) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"data_path": dataset}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_path): |
|
|
|
_DEFAULT_SPLIT = 'train' |
|
huggingface_dataset = data_path['train'] |
|
features = huggingface_dataset.features |
|
for idx, row in enumerate(huggingface_dataset): |
|
features_dict = {feature: row[feature] for feature in features} |
|
|
|
image = features_dict.pop('image') |
|
features_dict = {'image': image, **features_dict} |
|
yield idx, features_dict |
|
|
|
|
|
|
|
|