import datasets from datasets import load_dataset _CONSTITUENT_DATASETS = ['SAT-4', 'SAT-6', 'NASC-TG2', 'WHU-RS19', 'RSSCN7', 'RS_C11', 'SIRI-WHU', 'EuroSAT', 'NWPU-RESISC45', 'PatternNet', 'RSD46-WHU', 'GID', 'CLRS', 'Optimal-31', 'Airbus-Wind-Turbines-Patches', 'USTC_SmokeRS', 'Canadian_Cropland', 'Ships-In-Satellite-Imagery', 'Satellite-Images-of-Hurricane-Damage', 'Brazilian_Coffee_Scenes', 'Brazilian_Cerrado-Savanna_Scenes', 'Million-AID', 'UC_Merced_LandUse_MultiLabel', 'MLRSNet', 'MultiScene', 'RSI-CB256', 'AID_MultiLabel'] class SATINConfig(datasets.BuilderConfig): """BuilderConfig for SATIN""" def __init__(self, name, **kwargs): super(SATINConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs) self.name = name self.hf_dataset_name = 'jonathan-roberts1' + "/" + name self.description = None self.features = None class SATIN(datasets.GeneratorBasedBuilder): """SATIN Images dataset""" BUILDER_CONFIGS = [SATINConfig(name=dataset_name) for dataset_name in _CONSTITUENT_DATASETS] def _info(self): if self.config.description is None or self.config.features is None: stream_dataset_info = load_dataset(self.config.hf_dataset_name, streaming=True, split='train').info self.config.description = stream_dataset_info.description self.config.features = stream_dataset_info.features return datasets.DatasetInfo( description=self.config.description, features=self.config.features, ) def _split_generators(self, dl_manager): dataset = load_dataset(self.config.hf_dataset_name) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"data_path": dataset}, ), ] def _generate_examples(self, data_path): # iterate over the Huggingface dataset and yield the idx, image and label _DEFAULT_SPLIT = 'train' huggingface_dataset = data_path['train'] features = huggingface_dataset.features for idx, row in enumerate(huggingface_dataset): features_dict = {feature: row[feature] for feature in features} # Reorder features to make image the first feature image = features_dict.pop('image') features_dict = {'image': image, **features_dict} yield idx, features_dict