|
import datasets |
|
import json |
|
import os |
|
from datasets import Value, Sequence |
|
|
|
_CITATION = """\ |
|
@inproceedings{chalkidis-etal-2019-neural, |
|
title = "Neural Legal Judgment Prediction in {E}nglish", |
|
author = "Chalkidis, Ilias and |
|
Androutsopoulos, Ion and |
|
Aletras, Nikolaos", |
|
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics", |
|
month = jul, |
|
year = "2019", |
|
address = "Florence, Italy", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/P19-1424", |
|
doi = "10.18653/v1/P19-1424", |
|
pages = "4317--4323", |
|
} |
|
""" |
|
|
|
_HOMEPAGE = "https://archive.org/details/ECHR-ACL2019" |
|
_DESCRIPTION = """\ |
|
The ECHR Cases dataset is designed for experimentation of neural judgment prediction, as in the original 2019 ACL paper "Neural Legal Judgment Prediction in English". |
|
""" |
|
|
|
|
|
ARTICLES = { |
|
"2": "Right to life", |
|
"3": "Prohibition of torture", |
|
"4": "Prohibition of slavery and forced labour", |
|
"5": "Right to liberty and security", |
|
"6": "Right to a fair trial", |
|
"7": "No punishment without law", |
|
"8": "Right to respect for private and family life", |
|
"9": "Freedom of thought, conscience and religion", |
|
"10": "Freedom of expression", |
|
"11": "Freedom of assembly and association", |
|
"12": "Right to marry", |
|
"13": "Right to an effective remedy", |
|
"14": "Prohibition of discrimination", |
|
"15": "Derogation in time of emergency", |
|
"16": "Restrictions on political activity of aliens", |
|
"17": "Prohibition of abuse of rights", |
|
"18": "Limitation on use of restrictions on rights", |
|
"34": "Individual applications", |
|
"38": "Examination of the case", |
|
"39": "Friendly settlements", |
|
"46": "Binding force and execution of judgments", |
|
"P1-1": "Protection of property", |
|
"P1-2": "Right to education", |
|
"P1-3": "Right to free elections", |
|
"P3-1": "Right to free elections", |
|
"P4-1": "Prohibition of imprisonment for debt", |
|
"P4-2": "Freedom of movement", |
|
"P4-3": "Prohibition of expulsion of nationals", |
|
"P4-4": "Prohibition of collective expulsion of aliens", |
|
"P6-1": "Abolition of the death penalty", |
|
"P6-2": "Death penalty in time of war", |
|
"P6-3": "Prohibition of derogations", |
|
"P7-1": "Procedural safeguards relating to expulsion of aliens", |
|
"P7-2": "Right of appeal in criminal matters", |
|
"P7-3": "Compensation for wrongful conviction", |
|
"P7-4": "Right not to be tried or punished twice", |
|
"P7-5": "Equality between spouses", |
|
"P12-1": "General prohibition of discrimination", |
|
"P13-1": "Abolition of the death penalty", |
|
"P13-2": "Prohibition of derogations", |
|
"P13-3": "Prohibition of reservations", |
|
} |
|
|
|
|
|
class Echr(datasets.GeneratorBasedBuilder): |
|
"""ECHR dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="non-anon", data_dir="data"), |
|
datasets.BuilderConfig(name="anon", data_dir="data_anon"), |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"itemid": Value(dtype="string"), |
|
"languageisocode": Value(dtype="string"), |
|
"respondent": Value(dtype="string"), |
|
"branch": Value(dtype="string"), |
|
"date": Value(dtype="int64"), |
|
"docname": Value(dtype="string"), |
|
"importance": Value(dtype="int64"), |
|
"conclusion": Value(dtype="string"), |
|
"judges": Value(dtype="string"), |
|
"text": Sequence(feature=Value(dtype="string")), |
|
"violated_articles": Sequence(feature=Value(dtype="string")), |
|
"violated_paragraphs": Sequence(feature=Value(dtype="string")), |
|
"violated_bulletpoints": Sequence(feature=Value(dtype="string")), |
|
"non_violated_articles": Sequence(feature=Value(dtype="string")), |
|
"non_violated_paragraphs": Sequence(feature=Value(dtype="string")), |
|
"non_violated_bulletpoints": Sequence(feature=Value(dtype="string")), |
|
"violated": Value(dtype="bool"), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
description=_DESCRIPTION, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
path_prefix = self.config.data_dir |
|
data_dir = dl_manager.download([os.path.join(path_prefix, f"{f}.jsonl") for f in ["train", "test", "dev"]]) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": data_dir[0], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={ |
|
"filepath": data_dir[1], |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={ |
|
"filepath": data_dir[2], |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
with open(filepath, encoding="utf-8") as f: |
|
for id_, row in enumerate(f): |
|
data = json.loads(row) |
|
yield id_, data |
|
|