jordiae commited on
Commit
ecf49a8
1 Parent(s): eef9304

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -2
README.md CHANGED
@@ -1,13 +1,60 @@
1
  # ExeBench: an ML-scale dataset of executable C functions
2
 
 
 
 
 
3
  ## Usage
4
 
 
 
 
5
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  # Load dataset split. In this case, synthetic test split
7
  dataset = load_dataset('jordiae/exebench', split='test_synth')
 
 
8
  ```
9
 
10
- See https://github.com/jordiae/exebench for more examples.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
  ## License
13
 
@@ -37,7 +84,7 @@ series = {MAPS 2022}
37
 
38
  ## Credits
39
 
40
- We thank Anghabench authors for their type inference-based synthetic dependencies generation for C functions.
41
 
42
  ## Contact
43
 
 
1
  # ExeBench: an ML-scale dataset of executable C functions
2
 
3
+ ExeBench is a dataset of millions of C functions paired with dependencies and metadatada such that at least a subset of it can be executed with IO pairs. It is mainly inteded for machine learning applications but it is application-agnostic enough to have other usages.
4
+ Please read the paper for more information: https://dl.acm.org/doi/abs/10.1145/3520312.3534867.
5
+ Please see `examples/` in https://github.com/jordiae/exebench for examples.
6
+
7
  ## Usage
8
 
9
+ ### Option 1: Using the helpers in this repo
10
+
11
+
12
  ```
13
+ git clone https://github.com/jordiae/exebench.git
14
+ cd exebench/
15
+ python -m venv venv
16
+ source venv/bin/activate
17
+ pip install -r requirements_examples.txt
18
+ PYTHONPATH="${PYTHONPATH}:${pwd}" python examples/basic.py
19
+ ```
20
+
21
+ ### Option 2: Directly using the Hugginface Datasets library
22
+
23
+
24
+ ```
25
+ !pip install datasets zstandard
26
+
27
  # Load dataset split. In this case, synthetic test split
28
  dataset = load_dataset('jordiae/exebench', split='test_synth')
29
+ for e in dataset:
30
+ ...
31
  ```
32
 
33
+ ### Option 3: Directly download the dataset
34
+
35
+ Take a look at the files at: https://huggingface.co/datasets/jordiae/exebench/tree/main
36
+ The dataset consist of directories compressed with TAR. Inside each TAR, there is a series of jsonline files compressed with zstandard.
37
+
38
+ ## Statistics and versions
39
+
40
+ This release corresponds to ExeBench v1.01, a version with some improvements with respect to the original one presented in the paper. The statistics and studies presented in the paper remain consistent with respect to the new ones. The final splits of the new version consist of the following functions:
41
+
42
+
43
+ ```
44
+ train_not_compilable: 2.357M
45
+ train_synth_compilable: 2.308373M
46
+ train_real_compilable: 0.675074M
47
+ train_synth_simple_io: 0.550116M
48
+ train_real_simple_io: 0.043769M
49
+ train_synth_rich_io: 0.097250M
50
+ valid_synth: 5k
51
+ valid_real: 2.133k
52
+ test_synth: 5k
53
+ test_real: 2.134k
54
+ ```
55
+
56
+ The original dataset (v1.00) with the exact same data studied in the paper can be accessed on request at: https://huggingface.co/datasets/jordiae/exebench_legacy (please reach out for access)
57
+
58
 
59
  ## License
60
 
 
84
 
85
  ## Credits
86
 
87
+ We thank Anghabench authors for their type inference-based synthetic dependencies generation for C functions. This software, Psyche-C, can be found at: https://github.com/ltcmelo/psychec
88
 
89
  ## Contact
90