Datasets:
Tasks:
Image Classification
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
100K<n<1M
ArXiv:
License:
test new feature definition without json
Browse files- dataset_infos.json +0 -30
- rvl_cdip_easyOCR.py +5 -3
- test_loader.py +13 -0
dataset_infos.json
CHANGED
@@ -4,36 +4,6 @@
|
|
4 |
"citation": "@inproceedings{harley2015icdar,\n title = {Evaluation of Deep Convolutional Nets for Document Image Classification and Retrieval},\n author = {Adam W Harley and Alex Ufkes and Konstantinos G Derpanis},\n booktitle = {International Conference on Document Analysis and Recognition ({ICDAR})}},\n year = {2015}\n}\n",
|
5 |
"homepage": "https://www.cs.cmu.edu/~aharley/rvl-cdip/",
|
6 |
"license": "https://www.industrydocuments.ucsf.edu/help/copyright/",
|
7 |
-
"features": {
|
8 |
-
"image": {
|
9 |
-
"decode": true,
|
10 |
-
"id": null,
|
11 |
-
"_type": "Image"
|
12 |
-
},
|
13 |
-
"label": {
|
14 |
-
"num_classes": 16,
|
15 |
-
"names": [
|
16 |
-
"letter",
|
17 |
-
"form",
|
18 |
-
"email",
|
19 |
-
"handwritten",
|
20 |
-
"advertisement",
|
21 |
-
"scientific report",
|
22 |
-
"scientific publication",
|
23 |
-
"specification",
|
24 |
-
"file folder",
|
25 |
-
"news article",
|
26 |
-
"budget",
|
27 |
-
"invoice",
|
28 |
-
"presentation",
|
29 |
-
"questionnaire",
|
30 |
-
"resume",
|
31 |
-
"memo"
|
32 |
-
],
|
33 |
-
"id": null,
|
34 |
-
"_type": "ClassLabel"
|
35 |
-
}
|
36 |
-
},
|
37 |
"post_processed": null,
|
38 |
"supervised_keys": {
|
39 |
"input": "image",
|
|
|
4 |
"citation": "@inproceedings{harley2015icdar,\n title = {Evaluation of Deep Convolutional Nets for Document Image Classification and Retrieval},\n author = {Adam W Harley and Alex Ufkes and Konstantinos G Derpanis},\n booktitle = {International Conference on Document Analysis and Recognition ({ICDAR})}},\n year = {2015}\n}\n",
|
5 |
"homepage": "https://www.cs.cmu.edu/~aharley/rvl-cdip/",
|
6 |
"license": "https://www.industrydocuments.ucsf.edu/help/copyright/",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
"post_processed": null,
|
8 |
"supervised_keys": {
|
9 |
"input": "image",
|
rvl_cdip_easyOCR.py
CHANGED
@@ -88,6 +88,8 @@ class RvlCdip(datasets.GeneratorBasedBuilder):
|
|
88 |
"id": datasets.Value("string"),
|
89 |
"image": datasets.Image(),
|
90 |
"label": datasets.ClassLabel(names=_CLASSES),
|
|
|
|
|
91 |
}
|
92 |
),
|
93 |
supervised_keys=("image", "label"),
|
@@ -171,10 +173,10 @@ class RvlCdip(datasets.GeneratorBasedBuilder):
|
|
171 |
@staticmethod
|
172 |
def _path_to_OCR(image_to_OCR, file_path):
|
173 |
# obtain text and boxes given file_path
|
174 |
-
|
175 |
if file_path in image_to_OCR:
|
176 |
-
|
177 |
-
return
|
178 |
|
179 |
def _generate_examples(self, archive_iterator, labels_filepath, split):
|
180 |
with open(labels_filepath, encoding="utf-8") as f:
|
|
|
88 |
"id": datasets.Value("string"),
|
89 |
"image": datasets.Image(),
|
90 |
"label": datasets.ClassLabel(names=_CLASSES),
|
91 |
+
"words": datasets.Sequence(datasets.Value("string")),
|
92 |
+
"boxes": datasets.Sequence(datasets.Sequence(datasets.Value("int32"))),
|
93 |
}
|
94 |
),
|
95 |
supervised_keys=("image", "label"),
|
|
|
173 |
@staticmethod
|
174 |
def _path_to_OCR(image_to_OCR, file_path):
|
175 |
# obtain text and boxes given file_path
|
176 |
+
words, boxes = None, None
|
177 |
if file_path in image_to_OCR:
|
178 |
+
words, boxes = image_to_OCR[file_path]
|
179 |
+
return words, boxes
|
180 |
|
181 |
def _generate_examples(self, archive_iterator, labels_filepath, split):
|
182 |
with open(labels_filepath, encoding="utf-8") as f:
|
test_loader.py
CHANGED
@@ -1,5 +1,18 @@
|
|
1 |
from datasets import load_dataset
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
data = load_dataset(
|
4 |
"./rvl_cdip_easyOCR.py",
|
5 |
split="test",
|
|
|
1 |
from datasets import load_dataset
|
2 |
|
3 |
+
|
4 |
+
data = load_dataset(
|
5 |
+
"jordyvl/rvl-cdip_easyOCR",
|
6 |
+
split="test",
|
7 |
+
#cache_dir="/mnt/lerna/data/HFcache",
|
8 |
+
# data_files={ # this is the path to the images if it does not download it
|
9 |
+
# "binary": __file__#"/mnt/lerna/data/HFcache/downloads/c8cc6f89129255a9adf3e97e319ebe2055cf97662135b3ad26c79e9432544db5",
|
10 |
+
# },
|
11 |
+
#data_dir="/home/jordy/Downloads/OCRedText", # this is the path to the OCR data
|
12 |
+
)
|
13 |
+
from pdb import set_trace; set_trace()
|
14 |
+
|
15 |
+
|
16 |
data = load_dataset(
|
17 |
"./rvl_cdip_easyOCR.py",
|
18 |
split="test",
|