rvl_cdip_multi / rvl_cdip_multi.py
jordyvl's picture
try to run for test set image conversion
49508ed
import os
from pathlib import Path
from typing import List
import datasets
import pdf2image
from tqdm import tqdm
import io
datasets.logging.set_verbosity_info()
logger = datasets.logging.get_logger(__name__)
MODE="binary"
_CITATION = """\
@inproceedings{jordyvlRVLmulti,
title = {},
author = {Jordy Van Landeghem},
booktitle = {},
year = {2023}
}
"""
_DESCRIPTION = """\
blabla
"""
_HOMEPAGE = "TBD"
_LICENSE = "https://www.industrydocuments.ucsf.edu/help/copyright/"
_BACKOFF_folder = "/mnt/lerna/data/RVL-CDIP_pdf"
# "/mnt/lerna/data/RVL_CDIP_multi.tar.gz"
_CLASSES = [
"letter",
"form",
"email",
"handwritten",
"advertisement",
"scientific_report",
"scientific_publication",
"specification",
"file_folder",
"news_article",
"budget",
"invoice",
"presentation",
"questionnaire",
"resume",
"memo",
]
def batched_conversion(pdf_file):
info = pdf2image.pdfinfo_from_path(pdf_file, userpw=None, poppler_path=None)
maxPages = info["Pages"]
logger.info(f"{pdf_file} has {str(maxPages)} pages")
images = []
for page in range(1, maxPages + 1, 10):
images.extend(
pdf2image.convert_from_path(
pdf_file, dpi=200, first_page=page, last_page=min(page + 10 - 1, maxPages)
)
)
return images
def open_pdf_binary(pdf_file):
with open(pdf_file, "rb") as f:
return f.read()
class RvlCdipMulti(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="default",
version=datasets.Version("0.0.1", ""),
description="",
)
]
def __init__(self, *args, examples_per_class=None, **kwargs):
super().__init__(*args, **kwargs)
# Batch size used by the ArrowWriter
# It defines the number of samples that are kept in memory before writing them
# and also the length of the arrow chunks
# None means that the ArrowWriter will use its default value
# self._writer_batch_size = writer_batch_size
# self.writer_batch_size = writer_batch_size
# examples per class to stop generating
self.examples_per_class = examples_per_class
@property
def manual_download_instructions(self):
return (
"To use RVL-CDIP_multi you have to download it manually. Please extract all files in one folder and load the dataset with: "
"`datasets.load_dataset('jordyvl/rvl_cdip_multi', data_dir='path/to/folder/folder_name')`"
)
def _info(self):
# DEFAULT_WRITER_BATCH_SIZE
folder = None
if isinstance(self.config.data_files, str):
folder = self.config.data_files # needs to be extracted cuz zip/tar
else:
if isinstance(self.config.data_dir, str):
folder = self.config.data_dir # contains the folder structure at someone local disk
else:
folder = _BACKOFF_folder # my local path, others should set data_dir or data_files
self.config.data_dir = folder
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"file": datasets.Value("binary"), #datasets.Sequence(datasets.Image()),
"labels": datasets.features.ClassLabel(names=_CLASSES),
}
),
task_templates=None,
)
def _split_generators(
self, dl_manager: datasets.DownloadManager
) -> List[datasets.SplitGenerator]:
if os.path.isdir(self.config.data_dir):
data_files = {
labelset: os.path.join(self.config.data_dir, labelset)
for labelset in sorted(os.listdir(self.config.data_dir), reverse=True)
if not "csv" in labelset
}
# self.config.data_dir = None
elif self.config.data_dir.endswith(".tar.gz"):
archive_path = dl_manager.download(self.config.data_dir)
data_files = dl_manager.iter_archive(archive_path)
raise NotImplementedError()
elif self.config.data_dir.endswith(".zip"):
archive_path = dl_manager.download_and_extract(self.config.data_dir)
data_files = dl_manager.iter_archive(archive_path)
raise NotImplementedError()
splits = []
for split_name, folder in data_files.items():
print(folder)
splits.append(
datasets.SplitGenerator(name=split_name, gen_kwargs={"archive_path": folder})
)
return splits
def _generate_examples(self, archive_path):
labels = self.info.features["labels"]
extensions = {".pdf", ".PDF"}
for i, path in tqdm(enumerate(Path(archive_path).glob("**/*/*")), desc=f"{archive_path}"):
if path.suffix in extensions:
try:
images = open_pdf_binary(path)
#images = batched_conversion(path)
yield path.name, {
"file": images,
"labels": labels.encode_example(path.parent.name.lower()),
}
except Exception as e:
logger.warning(f"{e} failed to parse {i}")
# can do a map afterwards