|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""MedWiki.""" |
|
|
|
import os |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
|
|
_CITATION = """\ |
|
@article{corbeil2024iryonlp, |
|
title={IryoNLP at MEDIQA-CORR 2024: Tackling the Medical Error Detection & Correction Task On the Shoulders of Medical Agents}, |
|
author={Jean-Philippe Corbeil}, |
|
journal={arXiv preprint arXiv:2404.15488}, |
|
year={2024} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
This is a filtered version of the `Cohere/wikipedia-22-12` on medical topic articles using `MaartenGr/BERTopic_Wikipedia`. Keep note that some articles in the viewer might seem off topic, but usually they are related in some way (e.g. World War I is linked to the Spanish Flu). This is artefacts of some noise in the topic modelling. |
|
""" |
|
_HOMEPAGE = "" |
|
_LICENSE = "CC-BY-SA" |
|
_URLS = { |
|
"first_domain": "Cohere/wikipedia-22-12", |
|
} |
|
|
|
|
|
class MedWikiDataset(datasets.GeneratorBasedBuilder): |
|
"""Medical Wikipedia Articles.""" |
|
|
|
VERSION = datasets.Version("0.0.1") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="first_domain", version=VERSION, description="This part of my dataset covers a first domain"), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "first_domain" |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"wiki_id": datasets.Value("int32"), |
|
"title": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"paragraph_id": datasets.Value("int32"), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
urls = _URLS[self.config.name] |
|
dataset = datasets.load_dataset(urls, "en", trust_remote_code=True, cache_dir="/Users/jcorbeil/Documents/datasets/TEMP") |
|
path = dl_manager.download_and_extract("https://huggingface.co/datasets/jpcorb20/medical_wikipedia/resolve/main/med_topics.csv") |
|
df = pd.read_csv(path) |
|
med_wiki_ids = set(df["wiki_id"].values.tolist()) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"dataset": dataset["train"], |
|
"med_wiki_ids": med_wiki_ids, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, dataset, med_wiki_ids): |
|
count = -1 |
|
for data in dataset: |
|
if data["wiki_id"] in med_wiki_ids: |
|
count += 1 |
|
yield count, { |
|
"wiki_id": data["wiki_id"], |
|
"title": data["title"], |
|
"text": data["text"], |
|
"paragraph_id": data["paragraph_id"], |
|
} |
|
|