Upload 3 files
Browse files- README.md +61 -1
- med_topics.csv +0 -0
- medwiki_dataset.py +95 -0
README.md
CHANGED
@@ -1,3 +1,63 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
dataset_info:
|
3 |
+
features:
|
4 |
+
- name: title
|
5 |
+
dtype: string
|
6 |
+
- name: text
|
7 |
+
dtype: string
|
8 |
+
- name: wiki_id
|
9 |
+
dtype: int32
|
10 |
+
- name: paragraph_id
|
11 |
+
dtype: int32
|
12 |
+
- name: topic_infer
|
13 |
+
dtype: int64
|
14 |
+
- name: prob
|
15 |
+
dtype: float64
|
16 |
+
splits:
|
17 |
+
- name: train
|
18 |
+
num_bytes: 565706758
|
19 |
+
num_examples: 1139464
|
20 |
+
download_size: 0
|
21 |
+
dataset_size: 565706758
|
22 |
+
configs:
|
23 |
+
- config_name: default
|
24 |
+
data_files:
|
25 |
+
- split: train
|
26 |
+
path: data/train-*
|
27 |
+
task_categories:
|
28 |
+
- text-generation
|
29 |
+
language:
|
30 |
+
- en
|
31 |
+
tags:
|
32 |
+
- medical
|
33 |
+
pretty_name: w
|
34 |
+
size_categories:
|
35 |
+
- 1M<n<10M
|
36 |
+
license: cc
|
37 |
---
|
38 |
+
# MedWiki from ClinicalCorp
|
39 |
+
|
40 |
+
This repo generates on-the-fly the filtered version of the `Cohere/wikipedia-22-12` on medical topic articles using `MaartenGr/BERTopic_Wikipedia`.
|
41 |
+
|
42 |
+
## Original Dataset
|
43 |
+
|
44 |
+
https://huggingface.co/datasets/Cohere/wikipedia-22-12
|
45 |
+
|
46 |
+
## Topic modelling
|
47 |
+
|
48 |
+
https://huggingface.co/MaartenGr/BERTopic_Wikipedia
|
49 |
+
|
50 |
+
Check the `med_topics.csv` in the git repo for more info on which topics where targeted by prompting `GPT3.5-turbo 0613` over word representations of topics. The original topic list can be obtained from the topic model.
|
51 |
+
|
52 |
+
# LICENSE
|
53 |
+
|
54 |
+
This dataset is under Wikipedia's licensing which is *CC-BY-SA* : https://creativecommons.org/licenses/by-sa/4.0/ .
|
55 |
+
|
56 |
+
# Citation
|
57 |
+
|
58 |
+
@article{corbeil2024iryonlp,
|
59 |
+
title={IryoNLP at MEDIQA-CORR 2024: Tackling the Medical Error Detection & Correction Task On the Shoulders of Medical Agents},
|
60 |
+
author={Jean-Philippe Corbeil},
|
61 |
+
journal={arXiv preprint arXiv:2404.15488},
|
62 |
+
year={2024}
|
63 |
+
}
|
med_topics.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
medwiki_dataset.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""MedWiki."""
|
15 |
+
|
16 |
+
import os
|
17 |
+
|
18 |
+
import datasets
|
19 |
+
import pandas as pd
|
20 |
+
|
21 |
+
|
22 |
+
_CITATION = """\
|
23 |
+
@article{corbeil2024iryonlp,
|
24 |
+
title={IryoNLP at MEDIQA-CORR 2024: Tackling the Medical Error Detection & Correction Task On the Shoulders of Medical Agents},
|
25 |
+
author={Jean-Philippe Corbeil},
|
26 |
+
journal={arXiv preprint arXiv:2404.15488},
|
27 |
+
year={2024}
|
28 |
+
}
|
29 |
+
"""
|
30 |
+
|
31 |
+
_DESCRIPTION = """\
|
32 |
+
This is a filtered version of the `Cohere/wikipedia-22-12` on medical topic articles using `MaartenGr/BERTopic_Wikipedia`. Keep note that some articles in the viewer might seem off topic, but usually they are related in some way (e.g. World War I is linked to the Spanish Flu). This is artefacts of some noise in the topic modelling.
|
33 |
+
"""
|
34 |
+
_HOMEPAGE = ""
|
35 |
+
_LICENSE = "CC-BY-SA"
|
36 |
+
_URLS = {
|
37 |
+
"first_domain": "Cohere/wikipedia-22-12",
|
38 |
+
}
|
39 |
+
|
40 |
+
|
41 |
+
class MedWikiDataset(datasets.GeneratorBasedBuilder):
|
42 |
+
"""Medical Wikipedia Articles."""
|
43 |
+
|
44 |
+
VERSION = datasets.Version("0.0.1")
|
45 |
+
|
46 |
+
BUILDER_CONFIGS = [
|
47 |
+
datasets.BuilderConfig(name="first_domain", version=VERSION, description="This part of my dataset covers a first domain"),
|
48 |
+
]
|
49 |
+
|
50 |
+
DEFAULT_CONFIG_NAME = "first_domain"
|
51 |
+
|
52 |
+
def _info(self):
|
53 |
+
features = datasets.Features(
|
54 |
+
{
|
55 |
+
"wiki_id": datasets.Value("int32"),
|
56 |
+
"title": datasets.Value("string"),
|
57 |
+
"text": datasets.Value("string"),
|
58 |
+
"paragraph_id": datasets.Value("int32"),
|
59 |
+
}
|
60 |
+
)
|
61 |
+
|
62 |
+
return datasets.DatasetInfo(
|
63 |
+
description=_DESCRIPTION,
|
64 |
+
features=features,
|
65 |
+
homepage=_HOMEPAGE,
|
66 |
+
license=_LICENSE,
|
67 |
+
citation=_CITATION,
|
68 |
+
)
|
69 |
+
|
70 |
+
def _split_generators(self, dl_manager):
|
71 |
+
urls = _URLS[self.config.name]
|
72 |
+
dataset = datasets.load_dataset(urls, "en", trust_remote_code=True, cache_dir="/Users/jcorbeil/Documents/datasets/TEMP")
|
73 |
+
df = pd.read_csv(os.path.join(self.cache_dir, "med_topics.csv"))
|
74 |
+
med_wiki_ids = set(df["wiki_id"].values.tolist())
|
75 |
+
return [
|
76 |
+
datasets.SplitGenerator(
|
77 |
+
name=datasets.Split.TRAIN,
|
78 |
+
gen_kwargs={
|
79 |
+
"dataset": dataset["train"],
|
80 |
+
"med_wiki_ids": med_wiki_ids,
|
81 |
+
},
|
82 |
+
),
|
83 |
+
]
|
84 |
+
|
85 |
+
def _generate_examples(self, dataset, med_wiki_ids):
|
86 |
+
count = -1
|
87 |
+
for data in dataset:
|
88 |
+
if data["wiki_id"] in med_wiki_ids:
|
89 |
+
count += 1
|
90 |
+
yield count, {
|
91 |
+
"wiki_id": data["wiki_id"],
|
92 |
+
"title": data["title"],
|
93 |
+
"text": data["text"],
|
94 |
+
"paragraph_id": data["paragraph_id"],
|
95 |
+
}
|