Datasets:
Languages:
Portuguese
License:
# Lint as: python3 | |
"""REBEL""" | |
from __future__ import absolute_import, division, print_function | |
import datasets | |
import os | |
import re | |
import json | |
import logging | |
_DESCRIPTION = """\ | |
REBEL-Portuguese is an REBEL adaptation for Portuguese. | |
""" | |
_URL = "https://huggingface.co/datasets/ju-resplande/rebel-pt/resolve/main/rebel-pt.zip" | |
_LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)" | |
_CITATION = """\ | |
@inproceedings{huguet-cabot-navigli-2021-rebel, | |
title = "REBEL: Relation Extraction By End-to-end Language generation", | |
author = "Huguet Cabot, Pere-Llu{\'\i}s and | |
Navigli, Roberto", | |
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021", | |
month = nov, | |
year = "2021", | |
address = "Online and in the Barceló Bávaro Convention Centre, Punta Cana, Dominican Republic", | |
publisher = "Association for Computational Linguistics", | |
url = "https://github.com/Babelscape/rebel/blob/main/docs/EMNLP_2021_REBEL__Camera_Ready_.pdf", | |
} | |
""" | |
_HOMEPAGE = "https://github.com/ju-resplande/crocodile" | |
class RebelConfig(datasets.BuilderConfig): | |
"""BuilderConfig for REBEL.""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig for REBEL. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(RebelConfig, self).__init__(**kwargs) | |
class Rebel(datasets.GeneratorBasedBuilder): | |
"""Rebel 1.0""" | |
BUILDER_CONFIGS = [ | |
RebelConfig( | |
name="REBEL", | |
version=datasets.Version("1.0.0"), | |
description=_DESCRIPTION, | |
), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"title": datasets.Value("string"), | |
"context": datasets.Value("string"), | |
"triplets": datasets.Value("string"), | |
} | |
), | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
citation=_CITATION, | |
license=_LICENSE, | |
) | |
def _split_generators(self, dl_manager): | |
if self.config.data_dir: | |
data_dir = self.config.data_dir | |
else: | |
data_dir = dl_manager.download_and_extract(_URL) | |
return [ | |
datasets.SplitGenerator(name='pt', gen_kwargs={"filepath": os.path.join(data_dir, "pt.jsonl")}) | |
#datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(data_dir, "en_train.jsonl")}), | |
#datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": os.path.join(data_dir,"en_val.jsonl")}), | |
#datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(data_dir,"en_test.jsonl")}), | |
] | |
def _generate_examples(self, filepath): | |
"""This function returns the examples in the raw (text) form.""" | |
logging.info("generating examples from = %s", filepath) | |
with open(filepath, encoding="utf-8") as f: | |
for id_, row in enumerate(f): | |
article = json.loads(row) | |
prev_len = 0 | |
if len(article['triples']) == 0: | |
continue | |
count = 0 | |
for text_paragraph in article['text'].split('\n'): | |
if len(text_paragraph) == 0: | |
continue | |
sentences = re.split(r'(?<=[.])\s', text_paragraph) | |
text = '' | |
for sentence in sentences: | |
text += sentence + ' ' | |
if any([entity['boundaries'][0] < len(text) + prev_len < entity['boundaries'][1] for entity in article['entities']]): | |
continue | |
entities = sorted([entity for entity in article['entities'] if prev_len < entity['boundaries'][1] <= len(text)+prev_len], key=lambda tup: tup['boundaries'][0]) | |
decoder_output = '<triplet> ' | |
for int_ent, entity in enumerate(entities): | |
triplets = sorted([triplet for triplet in article['triples'] if triplet['subject'] == entity and prev_len< triplet['subject']['boundaries'][1]<=len(text) + prev_len and prev_len< triplet['object']['boundaries'][1]<=len(text)+ prev_len], key=lambda tup: tup['object']['boundaries'][0]) | |
if len(triplets) == 0: | |
continue | |
decoder_output += entity['surfaceform'] + ' <subj> ' | |
for triplet in triplets: | |
decoder_output += triplet['object']['surfaceform'] + ' <obj> ' + triplet['predicate']['surfaceform'] + ' <subj> ' | |
decoder_output = decoder_output[:-len(' <subj> ')] | |
decoder_output += ' <triplet> ' | |
decoder_output = decoder_output[:-len(' <triplet> ')] | |
count += 1 | |
prev_len += len(text) | |
if len(decoder_output) == 0: | |
text = '' | |
continue | |
text = re.sub('([\[\].,!?()])', r' \1 ', text.replace('()', '')) | |
text = re.sub('\s{2,}', ' ', text) | |
yield article['docid'] + '-' + str(count), { | |
"title": article['title'], | |
"context": text, | |
"id": article['uri'] + '-' + str(count), | |
"triplets": decoder_output, | |
} | |
text = '' |