|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Opinosis Opinion Dataset.""" |
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """ |
|
@inproceedings{ganesan2010opinosis, |
|
title={Opinosis: a graph-based approach to abstractive summarization of highly redundant opinions}, |
|
author={Ganesan, Kavita and Zhai, ChengXiang and Han, Jiawei}, |
|
booktitle={Proceedings of the 23rd International Conference on Computational Linguistics}, |
|
pages={340--348}, |
|
year={2010}, |
|
organization={Association for Computational Linguistics} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
The Opinosis Opinion Dataset consists of sentences extracted from reviews for 51 topics. |
|
Topics and opinions are obtained from Tripadvisor, Edmunds.com and Amazon.com. |
|
""" |
|
|
|
_URL = "https://github.com/kavgan/opinosis-summarization/raw/master/OpinosisDataset1.0_0.zip" |
|
|
|
_REVIEW_SENTS = "review_sents" |
|
_SUMMARIES = "summaries" |
|
|
|
|
|
class Opinosis(datasets.GeneratorBasedBuilder): |
|
"""Opinosis Opinion Dataset.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
_REVIEW_SENTS: datasets.Value("string"), |
|
_SUMMARIES: datasets.features.Sequence(datasets.Value("string")), |
|
} |
|
), |
|
supervised_keys=(_REVIEW_SENTS, _SUMMARIES), |
|
homepage="http://kavita-ganesan.com/opinosis/", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
extract_path = dl_manager.download_and_extract(_URL) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"path": extract_path}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, path=None): |
|
"""Yields examples.""" |
|
topics_path = os.path.join(path, "topics") |
|
filenames = sorted(os.listdir(topics_path)) |
|
for filename in filenames: |
|
file_path = os.path.join(topics_path, filename) |
|
topic_name = filename.split(".txt")[0] |
|
with open(file_path, "rb") as src_f: |
|
input_data = src_f.read().decode("latin-1") |
|
summaries_path = os.path.join(path, "summaries-gold", topic_name) |
|
summary_lst = [] |
|
for summ_filename in sorted(os.listdir(summaries_path)): |
|
file_path = os.path.join(summaries_path, summ_filename) |
|
with open(file_path, "rb") as tgt_f: |
|
data = tgt_f.read().strip().decode("latin-1") |
|
summary_lst.append(data) |
|
summary_data = summary_lst |
|
yield filename, {_REVIEW_SENTS: input_data, _SUMMARIES: summary_data} |
|
|