Datasets:
Tasks:
Object Detection
Size:
< 1K
File size: 5,330 Bytes
34b5d57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import collections
import json
import os
import datasets
_HOMEPAGE = "https://universe.roboflow.com/mohamed-traore-2ekkp/table-extraction-pdf/dataset/2"
_LICENSE = "CC BY 4.0"
_CITATION = """\
"""
_CATEGORIES = ['bordered', 'borderless']
_ANNOTATION_FILENAME = "_annotations.coco.json"
class TABLEEXTRACTIONConfig(datasets.BuilderConfig):
"""Builder Config for table-extraction"""
def __init__(self, data_urls, **kwargs):
"""
BuilderConfig for table-extraction.
Args:
data_urls: `dict`, name to url to download the zip file from.
**kwargs: keyword arguments forwarded to super.
"""
super(TABLEEXTRACTIONConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
self.data_urls = data_urls
class TABLEEXTRACTION(datasets.GeneratorBasedBuilder):
"""table-extraction object detection dataset"""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
TABLEEXTRACTIONConfig(
name="full",
description="Full version of table-extraction dataset.",
data_urls={
"train": "https://huggingface.co/datasets/keremberke/table-extraction/resolve/main/data/train.zip",
"validation": "https://huggingface.co/datasets/keremberke/table-extraction/resolve/main/data/valid.zip",
"test": "https://huggingface.co/datasets/keremberke/table-extraction/resolve/main/data/test.zip",
},
),
TABLEEXTRACTIONConfig(
name="mini",
description="Mini version of table-extraction dataset.",
data_urls={
"train": "https://huggingface.co/datasets/keremberke/table-extraction/resolve/main/data/valid-mini.zip",
"validation": "https://huggingface.co/datasets/keremberke/table-extraction/resolve/main/data/valid-mini.zip",
"test": "https://huggingface.co/datasets/keremberke/table-extraction/resolve/main/data/valid-mini.zip",
},
)
]
def _info(self):
features = datasets.Features(
{
"image_id": datasets.Value("int64"),
"image": datasets.Image(),
"width": datasets.Value("int32"),
"height": datasets.Value("int32"),
"objects": datasets.Sequence(
{
"id": datasets.Value("int64"),
"area": datasets.Value("int64"),
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
"category": datasets.ClassLabel(names=_CATEGORIES),
}
),
}
)
return datasets.DatasetInfo(
features=features,
homepage=_HOMEPAGE,
citation=_CITATION,
license=_LICENSE,
)
def _split_generators(self, dl_manager):
data_files = dl_manager.download_and_extract(self.config.data_urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"folder_dir": data_files["train"],
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"folder_dir": data_files["validation"],
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"folder_dir": data_files["test"],
},
),
]
def _generate_examples(self, folder_dir):
def process_annot(annot, category_id_to_category):
return {
"id": annot["id"],
"area": annot["area"],
"bbox": annot["bbox"],
"category": category_id_to_category[annot["category_id"]],
}
image_id_to_image = {}
idx = 0
annotation_filepath = os.path.join(folder_dir, _ANNOTATION_FILENAME)
with open(annotation_filepath, "r") as f:
annotations = json.load(f)
category_id_to_category = {category["id"]: category["name"] for category in annotations["categories"]}
image_id_to_annotations = collections.defaultdict(list)
for annot in annotations["annotations"]:
image_id_to_annotations[annot["image_id"]].append(annot)
filename_to_image = {image["file_name"]: image for image in annotations["images"]}
for filename in os.listdir(folder_dir):
filepath = os.path.join(folder_dir, filename)
if filename in filename_to_image:
image = filename_to_image[filename]
objects = [
process_annot(annot, category_id_to_category) for annot in image_id_to_annotations[image["id"]]
]
with open(filepath, "rb") as f:
image_bytes = f.read()
yield idx, {
"image_id": image["id"],
"image": {"path": filepath, "bytes": image_bytes},
"width": image["width"],
"height": image["height"],
"objects": objects,
}
idx += 1
|