|
import json |
|
import pandas as pd |
|
import datasets |
|
import os |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_CITATION = """ |
|
|
|
@inproceedings{chen-etal-2021-dialogsum, |
|
|
|
title={{D}ialog{S}um: {A} Real-Life Scenario Dialogue Summarization Dataset}, |
|
|
|
author={Chen, Yulong and Liu, Yang and Chen, Liang and Zhang, Yue}, |
|
|
|
journal={arXiv preprint arXiv:1911.12237}, |
|
|
|
year={2021}, |
|
|
|
booktitle ={Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021"}, |
|
|
|
month = {aug}, |
|
|
|
address = {Online}, |
|
|
|
publisher = {Association for Computational Linguistics}, |
|
|
|
url = {https://aclanthology.org/2021.findings-acl.449}, |
|
|
|
doi = {10.18653/v1/2021.findings-acl.449}, |
|
|
|
pages = {5062--5074} |
|
|
|
} |
|
|
|
""" |
|
|
|
|
|
|
|
_DESCRIPTION = """ |
|
|
|
DialogSUM Corpus contains 13460 chat dialogues with manually annotated |
|
|
|
summaries. |
|
|
|
There are two features: |
|
|
|
- dialogue: text of dialogue. |
|
|
|
- summary: human written summary of the dialogue. |
|
|
|
- topic: one liner summary of the dialogue. |
|
|
|
- id: id of a example. |
|
|
|
""" |
|
|
|
|
|
|
|
_HOMEPAGE = "hhttps://aclanthology.org/2021.findings-acl.449" |
|
|
|
|
|
|
|
_LICENSE = "CC BY-NC-ND 4.0" |
|
|
|
|
|
|
|
_URL = "https://huggingface.co/datasets/knkarthick/dialogsum_reformat/tree/main/" |
|
|
|
|
|
_URL = "https://huggingface.co/datasets/knkarthick/dialogsum_reformat/resolve/main/" |
|
|
|
|
|
_URLS = { |
|
"train": _URL + "train.json", |
|
"test": _URL + "test.json", |
|
"val": _URL + "val.json", |
|
} |
|
|
|
class Dialogsum(datasets.GeneratorBasedBuilder): |
|
"""DialogSum Corpus dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="dialogsum_reformat", |
|
version=datasets.Version("1.0.0", ""), |
|
description="DialogSum Corpus dataset", |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"dialogue": datasets.Value("string"), |
|
"summary": datasets.Value("string"), |
|
"topic": datasets.Value("string"), |
|
} |
|
), |
|
|
|
|
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
downloaded_files = dl_manager.download_and_extract(_URLS) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["test"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["val"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
"""This function returns the examples in the raw (text) form.""" |
|
logger.info("generating examples from = %s", filepath) |
|
key = 0 |
|
with open(os.path.join(filepath, split)) as f : |
|
data = json.load(f) |
|
|
|
for info in data : |
|
dialogue_id = info['id'] |
|
dialogue_name = info['dialogue'] |
|
dialogue_summary = info['summary'] |
|
dialogue_topic = info['topic'] |
|
|
|
yield key, { |
|
"id" : dialogue_id, |
|
"dialogue" : dialogue_name, |
|
"summary" : dialogue_summary, |
|
"topic" : dialogue_topic, |
|
} |
|
key += 1 |