dialogsum_reformat / dialogsum_reformat.py
knkarthick's picture
Update dialogsum_reformat.py
2152969 verified
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""DIALOGSum dataset."""
import json
import py7zr
import datasets
_CITATION = """
@inproceedings{chen-etal-2021-dialogsum,
title={{D}ialog{S}um: {A} Real-Life Scenario Dialogue Summarization Dataset},
author={Chen, Yulong and Liu, Yang and Chen, Liang and Zhang, Yue},
journal={arXiv preprint arXiv:1911.12237},
year={2021},
booktitle ={Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021"},
month = {aug},
address = {Online},
publisher = {Association for Computational Linguistics},
url = {https://aclanthology.org/2021.findings-acl.449},
doi = {10.18653/v1/2021.findings-acl.449},
pages = {5062--5074}
}
"""
_DESCRIPTION = """
DialogSUM Corpus contains 13460 chat dialogues with manually annotated
summaries.
There are two features:
- dialogue: text of dialogue.
- summary: human written summary of the dialogue.
- topic: one liner summary of the dialogue.
- id: id of a example.
"""
_HOMEPAGE = "hhttps://aclanthology.org/2021.findings-acl.449"
_LICENSE = "CC BY-NC-ND 4.0"
_URL = "https://huggingface.co/datasets/knkarthick/dialogsum_reformat/resolve/main/corpus.7z"
class Dialogsum(datasets.GeneratorBasedBuilder):
"""DIALOGSum Corpus dataset."""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="dialogsum"),
]
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("string"),
"dialogue": datasets.Value("string"),
"summary": datasets.Value("string"),
"topic": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
path = dl_manager.download(_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": (path, "train.json"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": (path, "test.json"),
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": (path, "val.json"),
"split": "val",
},
),
]
def _generate_examples(self, filepath, split):
"""Yields examples."""
path, fname = filepath
with open(path, "rb") as f:
with py7zr.SevenZipFile(f, "r") as z:
for name, bio in z.readall().items():
if name == fname:
data = json.load(bio)
for example in data:
yield example["id"], example
###################### OLD #####################
# import json
# import pandas as pd
# import datasets
# import os
# logger = datasets.logging.get_logger(__name__)
# _CITATION = """
# @inproceedings{chen-etal-2021-dialogsum,
# title={{D}ialog{S}um: {A} Real-Life Scenario Dialogue Summarization Dataset},
# author={Chen, Yulong and Liu, Yang and Chen, Liang and Zhang, Yue},
# journal={arXiv preprint arXiv:1911.12237},
# year={2021},
# booktitle ={Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021"},
# month = {aug},
# address = {Online},
# publisher = {Association for Computational Linguistics},
# url = {https://aclanthology.org/2021.findings-acl.449},
# doi = {10.18653/v1/2021.findings-acl.449},
# pages = {5062--5074}
# }
# """
# _DESCRIPTION = """
# DialogSUM Corpus contains 13460 chat dialogues with manually annotated
# summaries.
# There are two features:
# - dialogue: text of dialogue.
# - summary: human written summary of the dialogue.
# - topic: one liner summary of the dialogue.
# - id: id of a example.
# """
# _HOMEPAGE = "hhttps://aclanthology.org/2021.findings-acl.449"
# _LICENSE = "CC BY-NC-ND 4.0"
# # _URL = "https://huggingface.co/datasets/knkarthick/dialogsum_reformat/tree/main/"
# _URL = "https://huggingface.co/datasets/knkarthick/dialogsum_reformat/resolve/main/"
# # _URL = "https://huggingface.co/datasets/knkarthick/dialogsum_reformat/blob/main/"
# _URLS = {
# "train": _URL + "train.json",
# "test": _URL + "test.json",
# "val": _URL + "val.json",
# }
# class Dialogsum(datasets.GeneratorBasedBuilder):
# """Dialogsum Corpus dataset."""
# VERSION = datasets.Version("1.1.0")
# BUILDER_CONFIGS = [
# datasets.BuilderConfig(name="dialogsum_reformat"),
# ]
# def _info(self):
# return datasets.DatasetInfo(
# description=_DESCRIPTION,
# features=datasets.Features(
# {
# "id": datasets.Value("string"),
# "dialogue": datasets.Value("string"),
# "summary": datasets.Value("string"),
# "topic": datasets.Value("string"),
# }
# ),
# # No default supervised_keys (as we have to pass both question
# # and context as input).
# supervised_keys=None,
# homepage=_HOMEPAGE,
# license=_LICENSE,
# citation=_CITATION,
# )
# def _split_generators(self, dl_manager):
# downloaded_files = dl_manager.download_and_extract(_URLS)
# return [
# datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
# datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
# datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["val"]}),
# ]
# def _generate_examples(self, filepath):
# """This function returns the examples in the raw (text) form."""
# logger.info("generating examples from = %s", filepath)
# with open(filepath) as f :
# data = json.load(f)
# for info in data :
# dialogue_id = info['id']
# dialogue_name = info['dialogue']
# dialogue_summary = info['summary']
# dialogue_topic = info['topic']
# yield {
# "id" : dialogue_id,
# "dialogue" : dialogue_name,
# "summary" : dialogue_summary,
# "topic" : dialogue_topic,
# }
# # def _generate_examples(self, filepath, split):
# # """This function returns the examples in the raw (text) form."""
# # logger.info("generating examples from = %s", filepath)
# # with open(os.path.join(filepath, split)) as f :
# # data = json.load(f)
# # for info in data :
# # dialogue_id = info['id']
# # dialogue_name = info['dialogue']
# # dialogue_summary = info['summary']
# # dialogue_topic = info['topic']
# # yield key, {
# # "id" : dialogue_id,
# # "dialogue" : dialogue_name,
# # "summary" : dialogue_summary,
# # "topic" : dialogue_topic,
# # }