Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
Arabic
Size:
1K - 10K
License:
Commit
•
2a5e63e
1
Parent(s):
97632ec
Delete legacy dataset_infos.json
Browse files- dataset_infos.json +0 -47
dataset_infos.json
DELETED
@@ -1,47 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"plain_text": {
|
3 |
-
"description": "Arabic Jordanian General Tweets (AJGT) Corpus consisted of 1,800 tweets annotated as positive and negative. Modern Standard Arabic (MSA) or Jordanian dialect.\n",
|
4 |
-
"citation": "@inproceedings{alomari2017arabic,\n title={Arabic tweets sentimental analysis using machine learning},\n author={Alomari, Khaled Mohammad and ElSherif, Hatem M and Shaalan, Khaled},\n booktitle={International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems},\n pages={602--610},\n year={2017},\n organization={Springer}\n}\n",
|
5 |
-
"homepage": "https://github.com/komari6/Arabic-twitter-corpus-AJGT",
|
6 |
-
"license": "",
|
7 |
-
"features": {
|
8 |
-
"text": {
|
9 |
-
"dtype": "string",
|
10 |
-
"_type": "Value"
|
11 |
-
},
|
12 |
-
"label": {
|
13 |
-
"names": [
|
14 |
-
"Negative",
|
15 |
-
"Positive"
|
16 |
-
],
|
17 |
-
"_type": "ClassLabel"
|
18 |
-
}
|
19 |
-
},
|
20 |
-
"task_templates": [
|
21 |
-
{
|
22 |
-
"task": "text-classification",
|
23 |
-
"label_column": "label"
|
24 |
-
}
|
25 |
-
],
|
26 |
-
"builder_name": "parquet",
|
27 |
-
"dataset_name": "ajgt_twitter_ar",
|
28 |
-
"config_name": "plain_text",
|
29 |
-
"version": {
|
30 |
-
"version_str": "1.0.0",
|
31 |
-
"major": 1,
|
32 |
-
"minor": 0,
|
33 |
-
"patch": 0
|
34 |
-
},
|
35 |
-
"splits": {
|
36 |
-
"train": {
|
37 |
-
"name": "train",
|
38 |
-
"num_bytes": 175420,
|
39 |
-
"num_examples": 1800,
|
40 |
-
"dataset_name": null
|
41 |
-
}
|
42 |
-
},
|
43 |
-
"download_size": 91857,
|
44 |
-
"dataset_size": 175420,
|
45 |
-
"size_in_bytes": 267277
|
46 |
-
}
|
47 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|