JingjingZhai
commited on
Commit
•
5f7d1a5
1
Parent(s):
e5c1a67
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
4 |
+
|
5 |
+
## Dataset Overview
|
6 |
+
|
7 |
+
The dataset consists of five tasks for cross-species modeling plant genomes at single-nucleotide resolution in plants. These tasks are:
|
8 |
+
|
9 |
+
1. **Translation Initiation Site (TIS) Prediction**
|
10 |
+
2. **Translation Termination Site (TTS) Prediction**
|
11 |
+
3. **Splice Donor Site Prediction**
|
12 |
+
4. **Splice Acceptor Site Prediction**
|
13 |
+
5. **Evolutionary Conservation Prediction**
|
14 |
+
|
15 |
+
### Tasks 1-4: Site Predictions
|
16 |
+
- **Training Dataset**: Generated from Arabidopsis chromosomes 1-4
|
17 |
+
- **Validation Dataset**: Generated from Arabidopsis chromosome 5
|
18 |
+
- **Testing Datasets**: Compiled from rice, sorghum, and maize
|
19 |
+
|
20 |
+
### Task 5: Evolutionary Conservation Prediction
|
21 |
+
- **Training Dataset**: Generated from sorghum chromosomes 1-9
|
22 |
+
- **Validation Dataset**: Generated from sorghum chromosome 10
|
23 |
+
- **Testing Datasets**: Compiled in maize
|
24 |
+
|
25 |
+
This datasets facilitate robust cross-species nucleotide annotation.
|
26 |
+
|
27 |
+
## Dataset sizes
|
28 |
+
|
29 |
+
#### TIS, TTS, Donor, Acceptor
|
30 |
+
| | TIS | TTS | Donor | Acceptor |
|
31 |
+
|-------------------------|------------------------------|------------------------------|-------------------------------|-------------------------------|
|
32 |
+
| | # of positives | # of negative | # of positives | # of negative | # of positives | # of negative | # of positives | # of negative |
|
33 |
+
| Training on Arabidopsis chromosome 1-4 | 24,711 | 173,880 | 25,112 | 220,452 | 96,752 | 483,268 | 97,224 | 536,179 |
|
34 |
+
| Validation on Arabidopsis chromosome 5 | 7,311 | 50,514 | 7,461 | 64,365 | 29,377 | 140,536 | 29,567 | 155,397 |
|
35 |
+
| Rice test | 2,974 | 1,400,115 | 2,974 | 3,718,029 | 21,963 | 3,764,549 | 21,963 | 4,151,774 |
|
36 |
+
| Sorghum test | 3,214 | 3,937,719 | 3,214 | 10,445,530 | 24,801 | 10,821,941 | 24,801 | 12,640,573 |
|
37 |
+
| Maize test | 3,098 | 11,265,574 | 3,098 | 29,535,973 | 24,399 | 34,516,038 | 24,399 | 40,025,899 |
|
38 |
+
|
39 |
+
#### Evolutionary conservation
|
40 |
+
| | # of positives | # of negative |
|
41 |
+
|-------------|----------------|---------------|
|
42 |
+
| Train | 429,043 | 429,043 |
|
43 |
+
| Validation | 19,030 | 19,030 |
|
44 |
+
| Test | 947,769 | 976,230 |
|
45 |
+
|
46 |
+
## How to use
|
47 |
+
```
|
48 |
+
from datasets import load_dataset
|
49 |
+
import pandas as pd
|
50 |
+
repo_id = 'kuleshov-group/cross-species-single-nucleotide-annotation'
|
51 |
+
tis = load_dataset(repo_id, data_files={'train': 'TIS/train.tsv', 'valid': 'TIS/valid.tsv', 'test_rice':'TIS/test_rice.tsv', 'test_sorghum':'TIS/test_sorghum.tsv', 'test_maize':'TIS/test_maize.tsv'})
|
52 |
+
tis_train = tis['train']
|
53 |
+
# convert to pandas dataframe
|
54 |
+
tis_train_df = tis_train.to_pandas()
|
55 |
+
```
|