--- license: apache-2.0 --- ## Dataset Overview The dataset consists of five tasks for cross-species modeling plant genomes at single-nucleotide resolution in plants. These tasks are: 1. **Translation Initiation Site (TIS) Prediction** 2. **Translation Termination Site (TTS) Prediction** 3. **Splice Donor Site Prediction** 4. **Splice Acceptor Site Prediction** 5. **Evolutionary Conservation Prediction** ### Tasks 1-4: Site Predictions - **Training Dataset**: Generated from Arabidopsis chromosomes 1-4 - **Validation Dataset**: Generated from Arabidopsis chromosome 5 - **Testing Datasets**: Compiled from rice, sorghum, and maize ### Task 5: Evolutionary Conservation Prediction - **Training Dataset**: Generated from sorghum chromosomes 1-9 - **Validation Dataset**: Generated from sorghum chromosome 10 - **Testing Datasets**: Compiled in maize This datasets facilitate robust cross-species nucleotide annotation. ## Dataset sizes #### TIS, TTS, Donor, Acceptor | | TIS | TTS | Donor | Acceptor | |-------------------------|------------------------------|------------------------------|-------------------------------|-------------------------------| | | # of positives | # of negative | # of positives | # of negative | # of positives | # of negative | # of positives | # of negative | | Training on Arabidopsis chromosome 1-4 | 24,711 | 173,880 | 25,112 | 220,452 | 96,752 | 483,268 | 97,224 | 536,179 | | Validation on Arabidopsis chromosome 5 | 7,311 | 50,514 | 7,461 | 64,365 | 29,377 | 140,536 | 29,567 | 155,397 | | Rice test | 2,974 | 1,400,115 | 2,974 | 3,718,029 | 21,963 | 3,764,549 | 21,963 | 4,151,774 | | Sorghum test | 3,214 | 3,937,719 | 3,214 | 10,445,530 | 24,801 | 10,821,941 | 24,801 | 12,640,573 | | Maize test | 3,098 | 11,265,574 | 3,098 | 29,535,973 | 24,399 | 34,516,038 | 24,399 | 40,025,899 | #### Evolutionary conservation | | # of positives | # of negative | |-------------|----------------|---------------| | Train | 429,043 | 429,043 | | Validation | 19,030 | 19,030 | | Test | 947,769 | 976,230 | ## How to use ``` from datasets import load_dataset import pandas as pd repo_id = 'kuleshov-group/cross-species-single-nucleotide-annotation' tis = load_dataset(repo_id, data_files={'train': 'TIS/train.tsv', 'valid': 'TIS/valid.tsv', 'test_rice':'TIS/test_rice.tsv', 'test_sorghum':'TIS/test_sorghum.tsv', 'test_maize':'TIS/test_maize.tsv'}) tis_train = tis['train'] # convert to pandas dataframe tis_train_df = tis_train.to_pandas() ```