|
from typing import Iterator, List, Dict, TypeVar |
|
import json |
|
import argparse |
|
from concurrent.futures import ThreadPoolExecutor |
|
from itertools import islice |
|
|
|
import smart_open |
|
from tqdm import tqdm |
|
import jmespath |
|
import gcld3 |
|
|
|
T = TypeVar("T") |
|
|
|
|
|
detector = gcld3.NNetLanguageIdentifier(min_num_bytes=20, max_num_bytes=1000) |
|
|
|
def batch_iterator(iterator: Iterator[T], batch_size: int = 50) -> Iterator[List[T]]: |
|
""" |
|
Batch an iterator into an iterator over lists of batch size. |
|
""" |
|
iterator = iter(iterator) |
|
while True: |
|
batch = list(islice(iterator, batch_size)) |
|
if not batch: |
|
return |
|
yield batch |
|
|
|
|
|
def process_chunk(chunk: List, extractor: jmespath.parser.ParsedResult) -> List[Dict]: |
|
""" |
|
Apply JMESPath to a chunk of JSONL data. |
|
""" |
|
results: List[Dict] = [] |
|
for line in chunk: |
|
data = json.loads(line) |
|
extracted = extractor.search(data) |
|
if extracted is not None: |
|
if not isinstance(extracted, list): |
|
extracted = [extracted] |
|
|
|
try: |
|
extracted_str = " ".join(set([ex for ex in extracted if isinstance(ex, str)])).strip() |
|
except: |
|
print(json.dumps(data, ensure_ascii=False)) |
|
raise |
|
|
|
lang = detector.FindLanguage(extracted_str) |
|
data["language"] = lang.language |
|
data["language_is_reliable"] = lang.is_reliable |
|
data["text_length"] = len(extracted_str) |
|
data["data_length"] = len(line) |
|
data["text_to_data_ratio"] = len(extracted_str) / len(line) |
|
|
|
results.append(data) |
|
|
|
return results |
|
|
|
|
|
def process_file( |
|
input_files: str, |
|
output_file: str, |
|
chunk_size: int, |
|
num_threads: int, |
|
extractor: jmespath.parser.ParsedResult, |
|
): |
|
""" |
|
Apply JMESPath to a large JSONL file in parallel. |
|
input_file: path to input JSONL file |
|
output_file: path to output JSONL file |
|
chunk_size: number of lines to process at a time |
|
num_threads: number of threads to use |
|
extractor: compiled JMESPath expression to apply |
|
""" |
|
with smart_open.open(output_file, "wt", encoding="utf-8") as writer: |
|
for input_file in input_files: |
|
with smart_open.open( |
|
input_file, "rt", encoding="utf-8" |
|
) as reader: |
|
with ThreadPoolExecutor(max_workers=num_threads) as executor: |
|
for chunk in batch_iterator(tqdm(reader), batch_size=chunk_size): |
|
if not chunk: |
|
break |
|
|
|
results = executor.map(process_chunk, [chunk], [extractor]) |
|
for result in results: |
|
for item in result: |
|
writer.write(json.dumps(item, ensure_ascii=False)) |
|
writer.write("\n") |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser( |
|
description="Apply JMESPath to a large JSONL files in parallel." |
|
) |
|
parser.add_argument("input_files", help="path to input JSONL files", nargs="+") |
|
parser.add_argument("output_file", help="path to output JSONL file") |
|
parser.add_argument( |
|
"--chunk-size", |
|
type=int, |
|
default=10000, |
|
help="number of lines to process at a time (default: 10000)", |
|
) |
|
parser.add_argument( |
|
"--num-threads", |
|
type=int, |
|
default=4, |
|
help="number of threads to use (default: 4)", |
|
) |
|
args = parser.parse_args() |
|
|
|
jmespath_expression: jmespath.parser.ParsedResult = jmespath.compile( |
|
"[name, description, headline, about, tool, supply, keywords, step[].name, step[].text, step[].itemListElement[].text, " |
|
+ "step[].itemListElement[].itemListElement[].text, mainEntity[].name, mainEntity[].acceptedAnswer.text, " |
|
+ "mainEntity[].acceptedAnswer.name, mainEntity.name, mainEntity.acceptedAnswer.text, " |
|
+ "mainEntity.*.acceptedAnswer[].text, mainEntity[].acceptedAnswer[].text, step.itemListElement[].text, step.itemListElement[].itemListElement[].text][][]" |
|
) |
|
|
|
process_file( |
|
args.input_files, |
|
args.output_file, |
|
args.chunk_size, |
|
args.num_threads, |
|
jmespath_expression, |
|
) |
|
|