dchaplinsky
commited on
Commit
•
c7f1ebe
1
Parent(s):
730c9a4
Upload every_prompt.py
Browse files- every_prompt.py +62 -0
every_prompt.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import datasets
|
3 |
+
|
4 |
+
logger = datasets.logging.get_logger(__name__)
|
5 |
+
|
6 |
+
|
7 |
+
_DESCRIPTION = """\
|
8 |
+
Every prompt dataset.
|
9 |
+
Every Prompt is a data-driven approach to mining instructions from the web.
|
10 |
+
It contains over a million FAQs and HowTos from around the world in a structured format.
|
11 |
+
It also has basic pre-processing to calculate the length of the useful text and identify the language of that text with the help of GCLD3
|
12 |
+
"""
|
13 |
+
|
14 |
+
|
15 |
+
_URLS = [
|
16 |
+
"every_prompt_sample.jsonlines",
|
17 |
+
]
|
18 |
+
|
19 |
+
|
20 |
+
class EveryPromptDataset(datasets.GeneratorBasedBuilder):
|
21 |
+
"""Every Prompt Dataset"""
|
22 |
+
|
23 |
+
VERSION = datasets.Version("1.0.0")
|
24 |
+
DEFAULT_CONFIG_NAME = "default"
|
25 |
+
BUILDER_CONFIGS = [
|
26 |
+
datasets.BuilderConfig(name="default", version=VERSION, description=""),
|
27 |
+
]
|
28 |
+
|
29 |
+
def _info(self):
|
30 |
+
return datasets.DatasetInfo(
|
31 |
+
description=_DESCRIPTION,
|
32 |
+
features=datasets.Features(
|
33 |
+
{
|
34 |
+
"language": datasets.Value("string"),
|
35 |
+
"language_is_reliable": datasets.Value("bool"),
|
36 |
+
"text_length": datasets.Value("int32"),
|
37 |
+
"data_length": datasets.Value("int32"),
|
38 |
+
"text_to_data_ratio": datasets.Value("float32"),
|
39 |
+
"url": datasets.Value("string"),
|
40 |
+
"schema_type": datasets.Value("string"),
|
41 |
+
"payload": {},
|
42 |
+
}
|
43 |
+
),
|
44 |
+
)
|
45 |
+
|
46 |
+
def _split_generators(self, dl_manager):
|
47 |
+
downloaded_files = dl_manager.download(_URLS)
|
48 |
+
|
49 |
+
return [
|
50 |
+
datasets.SplitGenerator(
|
51 |
+
name=datasets.Split.TRAIN, gen_kwargs={"filepaths": downloaded_files}
|
52 |
+
)
|
53 |
+
]
|
54 |
+
|
55 |
+
def _generate_examples(self, filepaths):
|
56 |
+
"""This function returns the examples in the raw (text) form."""
|
57 |
+
logger.info("generating examples from = %s", filepaths)
|
58 |
+
for path in filepaths:
|
59 |
+
with open(path, encoding="utf-8") as f:
|
60 |
+
for instruction_str in f:
|
61 |
+
instruction = json.loads(instruction_str)
|
62 |
+
yield instruction["url"], instruction
|