File size: 13,981 Bytes
b6cff75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import json
import os
from collections import OrderedDict, defaultdict
from math import ceil

import numpy as np
import pandas as pd

import datasets


logger = datasets.logging.get_logger(__name__)

CCAGT_CLASSES = OrderedDict(
    {
        1: "NUCLEUS",
        2: "CLUSTER",
        3: "SATELLITE",
        4: "NUCLEUS_OUT_OF_FOCUS",
        5: "OVERLAPPED_NUCLEI",
        6: "NON_VIABLE_NUCLEUS",
        7: "LEUKOCYTE_NUCLEUS",
    }
)

_LICENSE = "CC BY NC 3.0 License"

_CITATION = """\
@misc{CCAgTDataset,
  doi = {10.17632/WG4BPM33HJ.2},
  url = {https://data.mendeley.com/datasets/wg4bpm33hj/2},
  author =  {Jo{\\~{a}}o Gustavo Atkinson Amorim and Andr{\'{e}} Vict{\'{o}}ria Matias and Tainee Bottamedi and Vinícius Sanches and Ane Francyne Costa and Fabiana Botelho De Miranda Onofre and Alexandre Sherlley Casimiro Onofre and Aldo von Wangenheim},
  title = {CCAgT: Images of Cervical Cells with AgNOR Stain Technique},
  publisher = {Mendeley},
  year = {2022},
  copyright = {Attribution-NonCommercial 3.0 Unported}
}
"""

_HOMEPAGE = "https://data.mendeley.com/datasets/wg4bpm33hj"

_DESCRIPTION = """\
The CCAgT (Images of Cervical Cells with AgNOR Stain Technique) dataset contains 9339 images (1600x1200 resolution where each pixel is 0.111µmX0.111µm) from 15 different slides stained using the AgNOR technique.
Each image has at least one label. In total, this dataset has more than 63K instances of annotated object.
The images are from the patients of the Gynecology and Colonoscopy Outpatient Clinic of the Polydoro Ernani de São Thiago University Hospital of the Universidade Federal de Santa Catarina (HU-UFSC).
"""

_DATA_URL = "https://md-datasets-cache-zipfiles-prod.s3.eu-west-1.amazonaws.com/wg4bpm33hj-2.zip"


def tvt(ids, tvt_size, seed=1609):
    """From a list of indexes/ids (int) will generate the train-validation-test data.

    Based on `github.com/scikit-learn/scikit-learn/blob/37ac6788c9504ee409b75e5e24ff7d86c90c2ffb/sklearn/model_selection/_split.py#L2321`
    """
    n_samples = len(ids)

    qtd = {
        "valid": ceil(n_samples * tvt_size[1]),
        "test": ceil(n_samples * tvt_size[2]),
    }
    qtd["train"] = int(n_samples - qtd["valid"] - qtd["test"])

    rng = np.random.RandomState(seed)
    permutatation = rng.permutation(ids)

    out = {
        "train": set(permutatation[: qtd["train"]]),
        "valid": set(permutatation[qtd["train"] : qtd["train"] + qtd["valid"]]),
        "test": set(permutatation[qtd["train"] + qtd["valid"] :]),
    }

    return out["train"], out["valid"], out["test"]


def annotations_per_image(df):
    """
    based on: https://github.com/johnnv1/CCAgT-utils/blob/54ade78e4ddb2e2ed9507b8a1633940897767cac/CCAgT_utils/describe.py#L152
    """
    df_describe_images = df.groupby(["image_id", "category_id"]).size().reset_index().rename(columns={0: "count"})
    df_describe_images = df_describe_images.pivot(columns=["category_id"], index="image_id")
    df_describe_images = df_describe_images.rename(CCAGT_CLASSES, axis=1)
    df_describe_images["qtd_annotations"] = df_describe_images.sum(axis=1)
    df_describe_images = df_describe_images.fillna(0)
    df_describe_images["NORs"] = (
        df_describe_images[
            "count",
            CCAGT_CLASSES[2],
        ]
        + df_describe_images[
            "count",
            CCAGT_CLASSES[3],
        ]
    )

    return df_describe_images


def tvt_by_nors(df, tvt_size=(0.7, 0.15, 0.15), **kwargs):
    """This will split the CCAgT annotations based on the number of NORs
    into each image. With a silly separation, first will split
    between each fold images with one or less NORs, after will split
    images with the amount of NORs is between 2 and 7, and at least will
    split images that have more than 7 NORs.

    based on `https://github.com/johnnv1/CCAgT-utils/blob/54ade78e4ddb2e2ed9507b8a1633940897767cac/CCAgT_utils/split.py#L64`
    """
    if sum(tvt_size) != 1:
        raise ValueError("The sum of `tvt_size` need to be equal to 1!")

    df_describe_imgs = annotations_per_image(df)

    img_ids = {}
    img_ids["low_nors"] = df_describe_imgs.loc[(df_describe_imgs["NORs"] < 2)].index
    img_ids["medium_nors"] = df_describe_imgs[(df_describe_imgs["NORs"] >= 2) * (df_describe_imgs["NORs"] <= 7)].index
    img_ids["high_nors"] = df_describe_imgs[(df_describe_imgs["NORs"] > 7)].index

    train_ids = set({})
    valid_ids = set({})
    test_ids = set({})

    for k, ids in img_ids.items():
        logger.info(f"Splitting {len(ids)} images with {k} quantity...")
        if len(ids) == 0:
            continue
        _train, _valid, _test = tvt(ids, tvt_size, **kwargs)
        logger.info(f">T: {len(_train)} V: {len(_valid)} T: {len(_test)}")
        train_ids = train_ids.union(_train)
        valid_ids = valid_ids.union(_valid)
        test_ids = test_ids.union(_test)

    return train_ids, valid_ids, test_ids


def get_basename(path):
    return os.path.splitext(os.path.basename(path))[0]


def get_slide_id(path):
    bn = get_basename(path)
    slide_id = bn.split("_")[0]
    return slide_id


class CCAgTConfig(datasets.BuilderConfig):
    """BuilderConfig for CCAgT."""

    seed = 1609
    tvt_size = (0.7, 0.15, 0.15)


class CCAgT(datasets.GeneratorBasedBuilder):
    """Images of Cervical Cells with AgNOR Stain Technique (CCAgT) dataset"""

    test_dummy_data = False

    VERSION = datasets.Version("2.0.0")

    BUILDER_CONFIG_CLASS = CCAgTConfig
    BUILDER_CONFIGS = [
        CCAgTConfig(name="semantic_segmentation", version=VERSION, description="The semantic segmentation variant."),
        CCAgTConfig(name="object_detection", version=VERSION, description="The object detection variant."),
        CCAgTConfig(name="instance_segmentation", version=VERSION, description="The instance segmentation variant."),
    ]

    DEFAULT_CONFIG_NAME = "semantic_segmentation"

    def _info(self):
        assert len(CCAGT_CLASSES) == 7

        if self.config.name == "semantic_segmentation":
            features = datasets.Features(
                {
                    "image": datasets.Image(),
                    "annotation": datasets.Image(),
                }
            )
        elif self.config.name == "object_detection":
            features = datasets.Features(
                {
                    "image": datasets.Image(),
                    "objects": datasets.Sequence(
                        {
                            "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
                            "label": datasets.ClassLabel(names=list(CCAGT_CLASSES.values())),
                        }
                    ),
                }
            )
        elif self.config.name == "instance_segmentation":
            features = datasets.Features(
                {
                    "image": datasets.Image(),
                    "objects": datasets.Sequence(
                        {
                            "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
                            "segment": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))),
                            "label": datasets.ClassLabel(names=list(CCAGT_CLASSES.values())),
                        }
                    ),
                }
            )
        else:
            raise NotImplementedError

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _download_and_extract_all(self, dl_manager):
        def extracted_by_slide(paths):
            return {get_slide_id(path): dl_manager.extract(path) for path in paths}

        data_dir = dl_manager.download_and_extract(_DATA_URL)
        base_path = os.path.join(data_dir, "wg4bpm33hj-2")

        logger.info("Extracting images...")
        self.images_base_dir = os.path.join(base_path, "images")
        images_to_extract = [
            os.path.join(self.images_base_dir, fn) for fn in os.listdir(self.images_base_dir) if fn.endswith(".zip")
        ]
        self.images_extracted = extracted_by_slide(images_to_extract)

        if self.config.name == "semantic_segmentation":
            logger.info("Extracting masks...")
            self.masks_base_dir = os.path.join(base_path, "masks")
            masks_to_extract = [
                os.path.join(self.masks_base_dir, fn) for fn in os.listdir(self.masks_base_dir) if fn.endswith(".zip")
            ]
            self.masks_extracted = extracted_by_slide(masks_to_extract)
        elif self.config.name in {"object_detection", "instance_segmentation"}:
            logger.info("Reading COCO OD file...")
            ccagt_OD_COCO_path = os.path.join(base_path, "CCAgT_COCO_OD.json")
            with open(ccagt_OD_COCO_path, "r", encoding="utf-8") as json_file:
                coco_OD = json.load(json_file)

            self._imageid_to_coco_OD_annotations = defaultdict(list)
            for labels in coco_OD["annotations"]:
                self._imageid_to_coco_OD_annotations[labels["image_id"]].append(labels)

        logger.info("Loading dataset info...")
        ccagt_raw_path = os.path.join(base_path, "CCAgT.parquet.gzip")
        with open(ccagt_raw_path, "rb") as f:
            self._ccagt_info = pd.read_parquet(f, columns=["image_name", "category_id", "image_id", "slide_id"])
        self._bn_to_imageid = pd.Series(
            self._ccagt_info["image_id"].values, index=self._ccagt_info["image_name"]
        ).to_dict()

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""

        def build_path(basename, tp="images"):
            slide = basename.split("_")[0]
            if tp == "images":
                dir_path = self.images_extracted[slide]
                ext = ".jpg"
            else:
                dir_path = self.masks_extracted[slide]
                ext = ".png"

            return os.path.join(dir_path, slide, basename + ext)

        def images_and_masks(basenames):
            for bn in basenames:
                yield build_path(bn), build_path(bn, "masks")

        def images_and_boxes(basenames):
            for bn in basenames:
                image_id = self._bn_to_imageid[bn]
                labels = [
                    {"bbox": annotation["bbox"], "label": annotation["category_id"] - 1}
                    for annotation in self._imageid_to_coco_OD_annotations[image_id]
                ]

                yield build_path(bn), labels

        def images_and_instances(basenames):
            for bn in basenames:
                image_id = self._bn_to_imageid[bn]
                instances = [
                    {
                        "bbox": annotation["bbox"],
                        "label": annotation["category_id"] - 1,
                        "segment": annotation["segmentation"],
                    }
                    for annotation in self._imageid_to_coco_OD_annotations[image_id]
                ]

                yield build_path(bn), instances

        self._download_and_extract_all(dl_manager)

        logger.info("Splitting dataset based on the NORs quantity by image...")
        train_ids, valid_ids, test_ids = tvt_by_nors(
            self._ccagt_info, tvt_size=self.config.tvt_size, seed=self.config.seed
        )
        train_bn_images = self._ccagt_info.loc[self._ccagt_info["image_id"].isin(train_ids), "image_name"].unique()
        valid_bn_images = self._ccagt_info.loc[self._ccagt_info["image_id"].isin(valid_ids), "image_name"].unique()
        test_bn_images = self._ccagt_info.loc[self._ccagt_info["image_id"].isin(test_ids), "image_name"].unique()

        if self.config.name == "semantic_segmentation":
            train_data = images_and_masks(train_bn_images)
            valid_data = images_and_masks(valid_bn_images)
            test_data = images_and_masks(test_bn_images)
        elif self.config.name == "object_detection":
            train_data = images_and_boxes(train_bn_images)
            valid_data = images_and_boxes(valid_bn_images)
            test_data = images_and_boxes(test_bn_images)
        elif self.config.name == "instance_segmentation":
            train_data = images_and_instances(train_bn_images)
            valid_data = images_and_instances(valid_bn_images)
            test_data = images_and_instances(test_bn_images)
        else:
            raise NotImplementedError

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"data": train_data},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"data": test_data},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"data": valid_data},
            ),
        ]

    def _generate_examples(self, data):
        if self.config.name == "semantic_segmentation":
            for img_path, msk_path in data:
                img_basename = get_basename(img_path)
                image_id = self._bn_to_imageid[img_basename]
                yield image_id, {
                    "image": img_path,
                    "annotation": msk_path,
                }
        elif self.config.name == "object_detection":
            for img_path, labels in data:
                img_basename = get_basename(img_path)
                image_id = self._bn_to_imageid[img_basename]
                yield image_id, {"image": img_path, "objects": labels}
        elif self.config.name == "instance_segmentation":
            for img_path, instances in data:
                img_basename = get_basename(img_path)
                image_id = self._bn_to_imageid[img_basename]
                yield image_id, {"image": img_path, "objects": instances}
        else:
            raise NotImplementedError