File size: 13,981 Bytes
b6cff75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
import json
import os
from collections import OrderedDict, defaultdict
from math import ceil
import numpy as np
import pandas as pd
import datasets
logger = datasets.logging.get_logger(__name__)
CCAGT_CLASSES = OrderedDict(
{
1: "NUCLEUS",
2: "CLUSTER",
3: "SATELLITE",
4: "NUCLEUS_OUT_OF_FOCUS",
5: "OVERLAPPED_NUCLEI",
6: "NON_VIABLE_NUCLEUS",
7: "LEUKOCYTE_NUCLEUS",
}
)
_LICENSE = "CC BY NC 3.0 License"
_CITATION = """\
@misc{CCAgTDataset,
doi = {10.17632/WG4BPM33HJ.2},
url = {https://data.mendeley.com/datasets/wg4bpm33hj/2},
author = {Jo{\\~{a}}o Gustavo Atkinson Amorim and Andr{\'{e}} Vict{\'{o}}ria Matias and Tainee Bottamedi and Vinícius Sanches and Ane Francyne Costa and Fabiana Botelho De Miranda Onofre and Alexandre Sherlley Casimiro Onofre and Aldo von Wangenheim},
title = {CCAgT: Images of Cervical Cells with AgNOR Stain Technique},
publisher = {Mendeley},
year = {2022},
copyright = {Attribution-NonCommercial 3.0 Unported}
}
"""
_HOMEPAGE = "https://data.mendeley.com/datasets/wg4bpm33hj"
_DESCRIPTION = """\
The CCAgT (Images of Cervical Cells with AgNOR Stain Technique) dataset contains 9339 images (1600x1200 resolution where each pixel is 0.111µmX0.111µm) from 15 different slides stained using the AgNOR technique.
Each image has at least one label. In total, this dataset has more than 63K instances of annotated object.
The images are from the patients of the Gynecology and Colonoscopy Outpatient Clinic of the Polydoro Ernani de São Thiago University Hospital of the Universidade Federal de Santa Catarina (HU-UFSC).
"""
_DATA_URL = "https://md-datasets-cache-zipfiles-prod.s3.eu-west-1.amazonaws.com/wg4bpm33hj-2.zip"
def tvt(ids, tvt_size, seed=1609):
"""From a list of indexes/ids (int) will generate the train-validation-test data.
Based on `github.com/scikit-learn/scikit-learn/blob/37ac6788c9504ee409b75e5e24ff7d86c90c2ffb/sklearn/model_selection/_split.py#L2321`
"""
n_samples = len(ids)
qtd = {
"valid": ceil(n_samples * tvt_size[1]),
"test": ceil(n_samples * tvt_size[2]),
}
qtd["train"] = int(n_samples - qtd["valid"] - qtd["test"])
rng = np.random.RandomState(seed)
permutatation = rng.permutation(ids)
out = {
"train": set(permutatation[: qtd["train"]]),
"valid": set(permutatation[qtd["train"] : qtd["train"] + qtd["valid"]]),
"test": set(permutatation[qtd["train"] + qtd["valid"] :]),
}
return out["train"], out["valid"], out["test"]
def annotations_per_image(df):
"""
based on: https://github.com/johnnv1/CCAgT-utils/blob/54ade78e4ddb2e2ed9507b8a1633940897767cac/CCAgT_utils/describe.py#L152
"""
df_describe_images = df.groupby(["image_id", "category_id"]).size().reset_index().rename(columns={0: "count"})
df_describe_images = df_describe_images.pivot(columns=["category_id"], index="image_id")
df_describe_images = df_describe_images.rename(CCAGT_CLASSES, axis=1)
df_describe_images["qtd_annotations"] = df_describe_images.sum(axis=1)
df_describe_images = df_describe_images.fillna(0)
df_describe_images["NORs"] = (
df_describe_images[
"count",
CCAGT_CLASSES[2],
]
+ df_describe_images[
"count",
CCAGT_CLASSES[3],
]
)
return df_describe_images
def tvt_by_nors(df, tvt_size=(0.7, 0.15, 0.15), **kwargs):
"""This will split the CCAgT annotations based on the number of NORs
into each image. With a silly separation, first will split
between each fold images with one or less NORs, after will split
images with the amount of NORs is between 2 and 7, and at least will
split images that have more than 7 NORs.
based on `https://github.com/johnnv1/CCAgT-utils/blob/54ade78e4ddb2e2ed9507b8a1633940897767cac/CCAgT_utils/split.py#L64`
"""
if sum(tvt_size) != 1:
raise ValueError("The sum of `tvt_size` need to be equal to 1!")
df_describe_imgs = annotations_per_image(df)
img_ids = {}
img_ids["low_nors"] = df_describe_imgs.loc[(df_describe_imgs["NORs"] < 2)].index
img_ids["medium_nors"] = df_describe_imgs[(df_describe_imgs["NORs"] >= 2) * (df_describe_imgs["NORs"] <= 7)].index
img_ids["high_nors"] = df_describe_imgs[(df_describe_imgs["NORs"] > 7)].index
train_ids = set({})
valid_ids = set({})
test_ids = set({})
for k, ids in img_ids.items():
logger.info(f"Splitting {len(ids)} images with {k} quantity...")
if len(ids) == 0:
continue
_train, _valid, _test = tvt(ids, tvt_size, **kwargs)
logger.info(f">T: {len(_train)} V: {len(_valid)} T: {len(_test)}")
train_ids = train_ids.union(_train)
valid_ids = valid_ids.union(_valid)
test_ids = test_ids.union(_test)
return train_ids, valid_ids, test_ids
def get_basename(path):
return os.path.splitext(os.path.basename(path))[0]
def get_slide_id(path):
bn = get_basename(path)
slide_id = bn.split("_")[0]
return slide_id
class CCAgTConfig(datasets.BuilderConfig):
"""BuilderConfig for CCAgT."""
seed = 1609
tvt_size = (0.7, 0.15, 0.15)
class CCAgT(datasets.GeneratorBasedBuilder):
"""Images of Cervical Cells with AgNOR Stain Technique (CCAgT) dataset"""
test_dummy_data = False
VERSION = datasets.Version("2.0.0")
BUILDER_CONFIG_CLASS = CCAgTConfig
BUILDER_CONFIGS = [
CCAgTConfig(name="semantic_segmentation", version=VERSION, description="The semantic segmentation variant."),
CCAgTConfig(name="object_detection", version=VERSION, description="The object detection variant."),
CCAgTConfig(name="instance_segmentation", version=VERSION, description="The instance segmentation variant."),
]
DEFAULT_CONFIG_NAME = "semantic_segmentation"
def _info(self):
assert len(CCAGT_CLASSES) == 7
if self.config.name == "semantic_segmentation":
features = datasets.Features(
{
"image": datasets.Image(),
"annotation": datasets.Image(),
}
)
elif self.config.name == "object_detection":
features = datasets.Features(
{
"image": datasets.Image(),
"objects": datasets.Sequence(
{
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
"label": datasets.ClassLabel(names=list(CCAGT_CLASSES.values())),
}
),
}
)
elif self.config.name == "instance_segmentation":
features = datasets.Features(
{
"image": datasets.Image(),
"objects": datasets.Sequence(
{
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
"segment": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))),
"label": datasets.ClassLabel(names=list(CCAGT_CLASSES.values())),
}
),
}
)
else:
raise NotImplementedError
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _download_and_extract_all(self, dl_manager):
def extracted_by_slide(paths):
return {get_slide_id(path): dl_manager.extract(path) for path in paths}
data_dir = dl_manager.download_and_extract(_DATA_URL)
base_path = os.path.join(data_dir, "wg4bpm33hj-2")
logger.info("Extracting images...")
self.images_base_dir = os.path.join(base_path, "images")
images_to_extract = [
os.path.join(self.images_base_dir, fn) for fn in os.listdir(self.images_base_dir) if fn.endswith(".zip")
]
self.images_extracted = extracted_by_slide(images_to_extract)
if self.config.name == "semantic_segmentation":
logger.info("Extracting masks...")
self.masks_base_dir = os.path.join(base_path, "masks")
masks_to_extract = [
os.path.join(self.masks_base_dir, fn) for fn in os.listdir(self.masks_base_dir) if fn.endswith(".zip")
]
self.masks_extracted = extracted_by_slide(masks_to_extract)
elif self.config.name in {"object_detection", "instance_segmentation"}:
logger.info("Reading COCO OD file...")
ccagt_OD_COCO_path = os.path.join(base_path, "CCAgT_COCO_OD.json")
with open(ccagt_OD_COCO_path, "r", encoding="utf-8") as json_file:
coco_OD = json.load(json_file)
self._imageid_to_coco_OD_annotations = defaultdict(list)
for labels in coco_OD["annotations"]:
self._imageid_to_coco_OD_annotations[labels["image_id"]].append(labels)
logger.info("Loading dataset info...")
ccagt_raw_path = os.path.join(base_path, "CCAgT.parquet.gzip")
with open(ccagt_raw_path, "rb") as f:
self._ccagt_info = pd.read_parquet(f, columns=["image_name", "category_id", "image_id", "slide_id"])
self._bn_to_imageid = pd.Series(
self._ccagt_info["image_id"].values, index=self._ccagt_info["image_name"]
).to_dict()
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
def build_path(basename, tp="images"):
slide = basename.split("_")[0]
if tp == "images":
dir_path = self.images_extracted[slide]
ext = ".jpg"
else:
dir_path = self.masks_extracted[slide]
ext = ".png"
return os.path.join(dir_path, slide, basename + ext)
def images_and_masks(basenames):
for bn in basenames:
yield build_path(bn), build_path(bn, "masks")
def images_and_boxes(basenames):
for bn in basenames:
image_id = self._bn_to_imageid[bn]
labels = [
{"bbox": annotation["bbox"], "label": annotation["category_id"] - 1}
for annotation in self._imageid_to_coco_OD_annotations[image_id]
]
yield build_path(bn), labels
def images_and_instances(basenames):
for bn in basenames:
image_id = self._bn_to_imageid[bn]
instances = [
{
"bbox": annotation["bbox"],
"label": annotation["category_id"] - 1,
"segment": annotation["segmentation"],
}
for annotation in self._imageid_to_coco_OD_annotations[image_id]
]
yield build_path(bn), instances
self._download_and_extract_all(dl_manager)
logger.info("Splitting dataset based on the NORs quantity by image...")
train_ids, valid_ids, test_ids = tvt_by_nors(
self._ccagt_info, tvt_size=self.config.tvt_size, seed=self.config.seed
)
train_bn_images = self._ccagt_info.loc[self._ccagt_info["image_id"].isin(train_ids), "image_name"].unique()
valid_bn_images = self._ccagt_info.loc[self._ccagt_info["image_id"].isin(valid_ids), "image_name"].unique()
test_bn_images = self._ccagt_info.loc[self._ccagt_info["image_id"].isin(test_ids), "image_name"].unique()
if self.config.name == "semantic_segmentation":
train_data = images_and_masks(train_bn_images)
valid_data = images_and_masks(valid_bn_images)
test_data = images_and_masks(test_bn_images)
elif self.config.name == "object_detection":
train_data = images_and_boxes(train_bn_images)
valid_data = images_and_boxes(valid_bn_images)
test_data = images_and_boxes(test_bn_images)
elif self.config.name == "instance_segmentation":
train_data = images_and_instances(train_bn_images)
valid_data = images_and_instances(valid_bn_images)
test_data = images_and_instances(test_bn_images)
else:
raise NotImplementedError
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"data": train_data},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"data": test_data},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"data": valid_data},
),
]
def _generate_examples(self, data):
if self.config.name == "semantic_segmentation":
for img_path, msk_path in data:
img_basename = get_basename(img_path)
image_id = self._bn_to_imageid[img_basename]
yield image_id, {
"image": img_path,
"annotation": msk_path,
}
elif self.config.name == "object_detection":
for img_path, labels in data:
img_basename = get_basename(img_path)
image_id = self._bn_to_imageid[img_basename]
yield image_id, {"image": img_path, "objects": labels}
elif self.config.name == "instance_segmentation":
for img_path, instances in data:
img_basename = get_basename(img_path)
image_id = self._bn_to_imageid[img_basename]
yield image_id, {"image": img_path, "objects": instances}
else:
raise NotImplementedError
|