Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
shuyangcao commited on
Commit
0034b4b
1 Parent(s): 6b07d21

first version

Browse files
Files changed (6) hide show
  1. .gitattributes +1 -0
  2. README.md +155 -0
  3. data/test.jsonl +3 -0
  4. data/train.jsonl +3 -0
  5. data/valid.jsonl +3 -0
  6. reddit_qg.py +78 -0
.gitattributes CHANGED
@@ -35,3 +35,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
35
  *.mp3 filter=lfs diff=lfs merge=lfs -text
36
  *.ogg filter=lfs diff=lfs merge=lfs -text
37
  *.wav filter=lfs diff=lfs merge=lfs -text
 
 
35
  *.mp3 filter=lfs diff=lfs merge=lfs -text
36
  *.ogg filter=lfs diff=lfs merge=lfs -text
37
  *.wav filter=lfs diff=lfs merge=lfs -text
38
+ *.jsonl filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - expert-generated
4
+ languages:
5
+ - en
6
+ licenses:
7
+ - cc-by-4.0
8
+ multilinguality:
9
+ - monolingual
10
+ task_categories:
11
+ - classification
12
+ task_ids:
13
+ - classification
14
+ pretty_name: RedditQG
15
+ ---
16
+
17
+
18
+ # Dataset Card for RedditQG
19
+
20
+ ## Table of Contents
21
+ - [Table of Contents](#table-of-contents)
22
+ - [Dataset Description](#dataset-description)
23
+ - [Dataset Summary](#dataset-summary)
24
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
25
+ - [Languages](#languages)
26
+ - [Dataset Structure](#dataset-structure)
27
+ - [Data Instances](#data-instances)
28
+ - [Data Fields](#data-fields)
29
+ - [Data Splits](#data-splits)
30
+ - [Dataset Creation](#dataset-creation)
31
+ - [Curation Rationale](#curation-rationale)
32
+ - [Source Data](#source-data)
33
+ - [Annotations](#annotations)
34
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
35
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
36
+ - [Social Impact of Dataset](#social-impact-of-dataset)
37
+ - [Discussion of Biases](#discussion-of-biases)
38
+ - [Other Known Limitations](#other-known-limitations)
39
+ - [Additional Information](#additional-information)
40
+ - [Dataset Curators](#dataset-curators)
41
+ - [Licensing Information](#licensing-information)
42
+ - [Citation Information](#citation-information)
43
+ - [Contributions](#contributions)
44
+
45
+ ## Dataset Description
46
+
47
+ - **Homepage:** [https://shuyangcao.github.io/projects/ontology_open_ended_question/](https://shuyangcao.github.io/projects/ontology_open_ended_question/)
48
+ - **Repository:** [https://github.com/ShuyangCao/open-ended_question_ontology](https://github.com/ShuyangCao/open-ended_question_ontology)
49
+ - **Paper:** [https://aclanthology.org/2021.acl-long.502/](https://aclanthology.org/2021.acl-long.502/)
50
+ - **Leaderboard:** [Needs More Information]
51
+ - **Point of Contact:** [Needs More Information]
52
+
53
+ ### Dataset Summary
54
+
55
+ This dataset contains answer-question pairs from QA communities of Reddit.
56
+
57
+ ### Supported Tasks and Leaderboards
58
+
59
+ [More Information Needed]
60
+
61
+ ### Languages
62
+
63
+ English
64
+
65
+ ## Dataset Structure
66
+
67
+ ### Data Instances
68
+
69
+ An example looks as follows.
70
+ ```
71
+ {
72
+ "id": "askscience/123",
73
+ "qid": "2323",
74
+ "answer": "A test answer.",
75
+ "question": "A test question?",
76
+ "score": 20
77
+ }
78
+ ```
79
+
80
+ ### Data Fields
81
+
82
+ - `id`: a `string` feature.
83
+ - `qid`: a `string` feature. There could be multiple answers to the same question.
84
+ - `answer`: a `string` feature.
85
+ - `question`: a `string` feature.
86
+ - `score`: an `int` feature which is the value of `upvotes - downvotes`.
87
+
88
+ ### Data Splits
89
+
90
+ - train: 647763
91
+ - valid: 36023
92
+ - test: 36202
93
+
94
+ ## Dataset Creation
95
+
96
+ ### Curation Rationale
97
+
98
+ [More Information Needed]
99
+
100
+ ### Source Data
101
+
102
+ #### Initial Data Collection and Normalization
103
+
104
+ [More Information Needed]
105
+
106
+ #### Who are the source language producers?
107
+
108
+ Reddit users.
109
+
110
+ ### Personal and Sensitive Information
111
+
112
+ Samples with abusive words are discarded, but there could be samples containing personal information.
113
+
114
+ ## Considerations for Using the Data
115
+
116
+ ### Social Impact of Dataset
117
+
118
+ [More Information Needed]
119
+
120
+ ### Discussion of Biases
121
+
122
+ [More Information Needed]
123
+
124
+ ### Other Known Limitations
125
+
126
+ [More Information Needed]
127
+
128
+ ## Additional Information
129
+
130
+ ### Dataset Curators
131
+
132
+ [More Information Needed]
133
+
134
+ ### Licensing Information
135
+
136
+ CC BY 4.0
137
+
138
+ ### Citation Information
139
+
140
+ ```
141
+ @inproceedings{cao-wang-2021-controllable,
142
+ title = "Controllable Open-ended Question Generation with A New Question Type Ontology",
143
+ author = "Cao, Shuyang and
144
+ Wang, Lu",
145
+ booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
146
+ month = aug,
147
+ year = "2021",
148
+ address = "Online",
149
+ publisher = "Association for Computational Linguistics",
150
+ url = "https://aclanthology.org/2021.acl-long.502",
151
+ doi = "10.18653/v1/2021.acl-long.502",
152
+ pages = "6424--6439",
153
+ abstract = "We investigate the less-explored task of generating open-ended questions that are typically answered by multiple sentences. We first define a new question type ontology which differentiates the nuanced nature of questions better than widely used question words. A new dataset with 4,959 questions is labeled based on the new ontology. We then propose a novel question type-aware question generation framework, augmented by a semantic graph representation, to jointly predict question focuses and produce the question. Based on this framework, we further use both exemplars and automatically generated templates to improve controllability and diversity. Experiments on two newly collected large-scale datasets show that our model improves question quality over competitive comparisons based on automatic metrics. Human judges also rate our model outputs highly in answerability, coverage of scope, and overall quality. Finally, our model variants with templates can produce questions with enhanced controllability and diversity.",
154
+ }
155
+ ```
data/test.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3643d3e0a6604d7590e59df2fb8af6f1f0d1ef7b5f94d5cdd1713cce9e29467
3
+ size 26200884
data/train.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f95c6733daacb68c115fa7a28c6732f36ad73730d7c107f53fe66cb019d8fe69
3
+ size 469436698
data/valid.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07fb2acfed2ef62b3e6e0889c7c17774a917d8a3d161edf72979a99f17b0e77e
3
+ size 26137417
reddit_qg.py ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """RedditQG: Reddit Question Generation Dataset."""
2
+
3
+
4
+ import json
5
+
6
+ import datasets
7
+
8
+
9
+ logger = datasets.logging.get_logger(__name__)
10
+
11
+
12
+ _CITATION = """\
13
+ @inproceedings{cao-wang-2021-controllable,
14
+ title = "Controllable Open-ended Question Generation with A New Question Type Ontology",
15
+ author = "Cao, Shuyang and
16
+ Wang, Lu",
17
+ booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
18
+ month = aug,
19
+ year = "2021",
20
+ address = "Online",
21
+ publisher = "Association for Computational Linguistics",
22
+ url = "https://aclanthology.org/2021.acl-long.502",
23
+ doi = "10.18653/v1/2021.acl-long.502",
24
+ pages = "6424--6439",
25
+ abstract = "We investigate the less-explored task of generating open-ended questions that are typically answered by multiple sentences. We first define a new question type ontology which differentiates the nuanced nature of questions better than widely used question words. A new dataset with 4,959 questions is labeled based on the new ontology. We then propose a novel question type-aware question generation framework, augmented by a semantic graph representation, to jointly predict question focuses and produce the question. Based on this framework, we further use both exemplars and automatically generated templates to improve controllability and diversity. Experiments on two newly collected large-scale datasets show that our model improves question quality over competitive comparisons based on automatic metrics. Human judges also rate our model outputs highly in answerability, coverage of scope, and overall quality. Finally, our model variants with templates can produce questions with enhanced controllability and diversity.",
26
+ }
27
+ """
28
+
29
+ _DESCRIPTION = """\
30
+ Reddit question generation dataset.
31
+ """
32
+
33
+ _URL = "https://huggingface.co/datasets/shuyangcao/reddit_qg/resolve/main/data/"
34
+ _URLS = {
35
+ "train": _URL + "train.jsonl",
36
+ "valid": _URL + "valid.jsonl",
37
+ "test": _URL + "test.jsonl",
38
+ }
39
+
40
+
41
+ class RedditQG(datasets.GeneratorBasedBuilder):
42
+ VERSION = datasets.Version("1.0.0")
43
+
44
+ def _info(self):
45
+ features = datasets.Features(
46
+ {
47
+ "id": datasets.Value("string"),
48
+ "qid": datasets.Value("string"),
49
+ "question": datasets.Value("string"),
50
+ "answer": datasets.Value("string"),
51
+ "score": datasets.Value("int")
52
+ }
53
+ )
54
+ return datasets.DatasetInfo(
55
+ description=_DESCRIPTION,
56
+ features=features,
57
+ supervised_keys=("answer", "question"),
58
+ homepage="",
59
+ citation=_CITATION,
60
+ )
61
+
62
+ def _split_generators(self, dl_manager):
63
+ downloaded_files = dl_manager.download_and_extract(_URLS)
64
+
65
+ return [
66
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"split_file": downloaded_files["train"]}),
67
+ datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"split_file": downloaded_files["valid"]}),
68
+ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"split_file": downloaded_files["test"]}),
69
+ ]
70
+
71
+ def _generate_examples(self, split_file):
72
+ """This function returns the examples in the raw (text) form."""
73
+ logger.info(f"generating examples from = {split_file}")
74
+
75
+ with open(split_file) as f:
76
+ for line in f:
77
+ data = json.loads(line)
78
+ yield data["id"], data