Datasets:
Tasks:
Token Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
named-entity-recognition
Languages:
Spanish
Size:
10K - 100K
License:
lcampillos
commited on
Commit
•
116e53c
1
Parent(s):
7d7712e
Delete clinical_trials.py
Browse files- clinical_trials.py +0 -120
clinical_trials.py
DELETED
@@ -1,120 +0,0 @@
|
|
1 |
-
'''
|
2 |
-
Procesar así los datos en el terminal:
|
3 |
-
|
4 |
-
import clinical_trials
|
5 |
-
|
6 |
-
from clinical_trials import ClinicalTrials
|
7 |
-
|
8 |
-
train_json = ClinicalTrials._generate_examples('train.json','train.conll')
|
9 |
-
|
10 |
-
x = json.dumps([item for item in train_json])
|
11 |
-
|
12 |
-
outFile = open("train.json",'w',encoding="utf8")
|
13 |
-
print(x,file=outFile)
|
14 |
-
outFile.close()
|
15 |
-
|
16 |
-
'''
|
17 |
-
|
18 |
-
|
19 |
-
import datasets
|
20 |
-
|
21 |
-
|
22 |
-
logger = datasets.logging.get_logger(__name__)
|
23 |
-
|
24 |
-
|
25 |
-
_LICENSE = "Creative Commons Attribution 4.0 International"
|
26 |
-
|
27 |
-
_VERSION = "1.1.0"
|
28 |
-
|
29 |
-
_URL = "https://huggingface.co/datasets/lcampillos/CT-EBM-ES"
|
30 |
-
_TRAINING_FILE = "train.conll"
|
31 |
-
_DEV_FILE = "dev.conll"
|
32 |
-
_TEST_FILE = "test.conll"
|
33 |
-
|
34 |
-
class ClinicalTrialsConfig(datasets.BuilderConfig):
|
35 |
-
"""BuilderConfig for ClinicalTrials dataset."""
|
36 |
-
|
37 |
-
def __init__(self, **kwargs):
|
38 |
-
super(ClinicalTrialsConfig, self).__init__(**kwargs)
|
39 |
-
|
40 |
-
|
41 |
-
class ClinicalTrials(datasets.GeneratorBasedBuilder):
|
42 |
-
"""ClinicalTrials dataset."""
|
43 |
-
|
44 |
-
BUILDER_CONFIGS = [
|
45 |
-
ClinicalTrialsConfig(
|
46 |
-
name="ClinicalTrials",
|
47 |
-
version=datasets.Version(_VERSION),
|
48 |
-
description="ClinicalTrials dataset"),
|
49 |
-
]
|
50 |
-
|
51 |
-
def _info(self):
|
52 |
-
return datasets.DatasetInfo(
|
53 |
-
features=datasets.Features(
|
54 |
-
{
|
55 |
-
"id": datasets.Value("string"),
|
56 |
-
"tokens": datasets.Sequence(datasets.Value("string")),
|
57 |
-
"ner_tags": datasets.Sequence(
|
58 |
-
datasets.features.ClassLabel(
|
59 |
-
names=[
|
60 |
-
"O",
|
61 |
-
"B-ANAT",
|
62 |
-
"B-CHEM",
|
63 |
-
"B-DISO",
|
64 |
-
"B-PROC",
|
65 |
-
"I-ANAT",
|
66 |
-
"I-CHEM",
|
67 |
-
"I-DISO",
|
68 |
-
"I-PROC",
|
69 |
-
]
|
70 |
-
)
|
71 |
-
),
|
72 |
-
}
|
73 |
-
),
|
74 |
-
supervised_keys=None,
|
75 |
-
)
|
76 |
-
|
77 |
-
def _split_generators(self, dl_manager):
|
78 |
-
"""Returns SplitGenerators."""
|
79 |
-
urls_to_download = {
|
80 |
-
"train": f"{_URL}{_TRAINING_FILE}",
|
81 |
-
"dev": f"{_URL}{_DEV_FILE}",
|
82 |
-
"test": f"{_URL}{_TEST_FILE}",
|
83 |
-
}
|
84 |
-
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
85 |
-
|
86 |
-
return [
|
87 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
|
88 |
-
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
|
89 |
-
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
|
90 |
-
]
|
91 |
-
|
92 |
-
def _generate_examples(self, filepath):
|
93 |
-
logger.info("⏳ Generating examples from = %s", filepath)
|
94 |
-
with open(filepath, encoding="utf-8") as f:
|
95 |
-
guid = 0
|
96 |
-
tokens = []
|
97 |
-
pos_tags = []
|
98 |
-
ner_tags = []
|
99 |
-
for line in f:
|
100 |
-
if line == "":
|
101 |
-
if tokens:
|
102 |
-
yield guid, {
|
103 |
-
"id": str(guid),
|
104 |
-
"tokens": tokens,
|
105 |
-
"ner_tags": ner_tags,
|
106 |
-
}
|
107 |
-
guid += 1
|
108 |
-
tokens = []
|
109 |
-
ner_tags = []
|
110 |
-
else:
|
111 |
-
splits = line.split(" ")
|
112 |
-
tokens.append(splits[0])
|
113 |
-
ner_tags.append(splits[-1].rstrip())
|
114 |
-
# last example
|
115 |
-
yield guid, {
|
116 |
-
"id": str(guid),
|
117 |
-
"tokens": tokens,
|
118 |
-
"ner_tags": ner_tags,
|
119 |
-
}
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|