
Project Report on the Computational Analysis of the Monty Hall
Problem: An In-depth Examination of Probability and Decision

Strategy
Yufei Huang | Master's in Computer Science | Northeastern University

Abstract:

This project report delineates the comprehensive analysis of the Monty Hall problem, a
renowned probability puzzle, employing Python for simulations and algorithmic strategies. It
encapsulates the development of interactive games and analytical models to unravel the
puzzle’s complexities. By integrating core computer science algorithms and principles, the
report presents a novel perspective on this classic problem, contributing to the field of
computational probability and decision-making.

1. Introduction:

The Monty Hall problem, stemming from a game show scenario, presents a unique
challenge in probability theory and decision-making. This project aims to apply advanced
computer science techniques, particularly in Python programming, to analyze and simulate
the problem. The objective is to provide empirical evidence supporting the theoretical
probability models and to create an interactive understanding of the problem's dynamics.

2. Methodology:

2.1 Bayesian Analysis:
2.1.1. Setting Up the Problem:
- Hypothesis (H): The car is behind door 1.
- Evidence (E): Monty opens a door revealing a goat.

2.1.2. Bayesian Formula Application:

Here, (P(H|E)) is the probability that the car is behind door 1 given that Monty has shown
a goat.

2.1.3. Determining Probabilities:
- P(H) : The prior probability that door 1 has the car, which is 1/3 as there are three doors.
- P(E|H) : The probability is 1 that Monty shows a goat given the car is behind door 1.

Since Monty will always show a goat.
- P(E|notH) : The probability is 1 that Monty shows a goat given the car is not behind door

1.

2.2 Python Simulation:
In addition to the React development, we have implemented Python code to simulate the
Monty Hall problem, providing statistical analysis and visualizations. This section of the
report explains the Python code used to simulate and analyze the Monty Hall problem.

2.2.1 Initialization and Setup:
- Importing Libraries: We import necessary Python libraries such as NumPy, Pandas,
Random, and Matplotlib for data manipulation, random number generation, and data
visualisation.
- `doors_array` Function: This function initializes the doors. It randomly assigns a car
(marked as 1) behind one of the three doors (marked as 0 if no car).
- `win_loose` Function: Determines the outcome of the game based on the player's strategy
(change or unchange). It checks whether the player wins (collects 1 point) or loses (collects
0 points) based on their final choice.

2.2.2 Simulation and Results Collection:
- `total_results` Function: Runs the Monty Hall game multiple times and collects the results.
It records the door configurations, initial choices, host's choices, final decisions, and game
outcomes.

- Dataframes Creation: Using Pandas, we create dataframes to store and display the
outcomes of games where the player either changed or did not change their initial door
choice.

2.2.3 Visualization and Statistical Analysis:
- Plotting Results: We use Matplotlib to plot the outcomes of each strategy (change or
unchange) over multiple iterations, providing a visual representation of the probability of
winning.
- `average_win` Function: Calculates the average probability of winning the game over
multiple iterations for both strategies.
- **Comparative Analysis:** The plots compare the effectiveness of changing versus not
changing the door, visually demonstrating the higher probability of winning when changing
the door.

2.2.3. Results:
The Python simulations revealed a consistent pattern: switching doors resulted in a success
rate of approximately 67%, while sticking to the original choice yielded a success rate of
about 33%. These findings align with the theoretical probability models and underscore the
counterintuitive nature of the problem.

2.3 React Game Implementation:
In addition to our Python-based simulations, we have expanded our analysis of the Monty
Hall problem by developing an interactive game using React. This web-based application
allows users to directly engage with the Monty Hall scenario, further enhancing the
understanding of the problem's dynamics.
- Game Setup: The game initializes with three doors, one of which randomly conceals a car
while the others hide goats. This setup is achieved using the React state management
system.
- User Interaction: Players select a door, after which one of the remaining doors with a goat
is revealed. The player then has the option to either stick with their original choice or switch
to the other unopened door.
- Game Stages: The game progresses through stages, from initial selection to the final
reveal, utilizing React's state updates to manage these transitions.
- Game Logic: The core logic of the game reflects the Monty Hall problem's probabilistic
nature. It includes functions to handle door selection, reveal a non-prize door, and determine
the game's outcome based on the player's final choice.

2.3.1 React Component Structure:
- The `ThreeDoorsGame` component encapsulates the entire game logic. It uses React
hooks such as `useState` and `useEffect` for state management and lifecycle methods.
- State Variables:
- `doors`: Represents the doors in the game.
- `carBehindDoor`: Randomly sets which door has the car.
- `chosenDoorIndex`: Tracks the player's chosen door.
- `revealedDoorIndex`: Indicates the door revealed by the host.
- `gameStage`: Manages the different stages of the game.
- `gameOver`: Flags the end of the game.

- Event Handlers:
- `handleDoorClick`: Manages the player's door selection and the game's progression.
- `revealGoatDoor`: Reveals a door with a goat, excluding the chosen and winning doors.
- `checkWin`: Determines if the player wins based on their final choice.

2.3.2 User Experience:
- The game provides a simple and interactive interface, allowing players to click on doors
and make decisions, closely mimicking the real-life game show scenario.
- Alerts are used to inform the player of the game's outcome, whether they have won the car
or found a goat.
- A 'Restart' button allows players to reset the game and try different strategies.

3. Conclusion and Future Enhancements:

Our team reflects on the enriching mathematical and probabilistic knowledge gained through
this project. The Monty Hall problem exploration has yielded valuable insights into
decision-making processes and the practical application of probability theory in real-life
scenarios. We envision this report as a cornerstone for subsequent academic pursuits and
projects, contributing substantially to our scholarly and professional development.

Future endeavors include expanding the algorithmic complexity to encompass more intricate
scenarios and integrating machine learning models to predict outcomes based on different
decision-making patterns.

- User Data Analysis: Collecting data from player choices in the React game could provide
insights into common decision-making patterns and strategies.
- Advanced Game Features: Implementing additional features such as a score tracker,
various difficulty levels, and enhanced user interfaces can further enrich the game
experience.

In summary, this report offers a comprehensive examination of the Monty Hall problem,
integrating mathematical theories, Bayesian analysis, computational simulations, and game
theory principles. Our findings extend beyond resolving the central query, contributing to a
broader comprehension of decision-making and probability. Despite inherent limitations, our
study establishes a strong foundation for future research in related fields.

Appendix:

Appendix A Python Scripts

In [1]: import numpy as np
import pandas as pd
import random
import matplotlib as plt
import matplotlib.pyplot as plt

In [2]: # normal question

In [11]: def doors_array():
 '''
 the function is desigend for initialize the door list
 And if the gift behind the door, we mark it as 1, otherwise, it is 0
 '''
 doors = [0,0,0]
 gift_i = random.randint(0,2)
 doors[gift_i] = 1
 return doors,gift_i

def win_loose(doors_array,change):
 '''
 the function is desigend for check if the guest win the game based on two stratgies

 change: the string the represented change a door or not
 change: switch to another unopend door
 unchange: stick in the initial choice

 Output:
 win_change_nums: if the guest win the game, we collect 1 point, otherwise, collect 0 point
 choose_i: the initial chooice
 gift_i: the door which hide the gift
 change_choose_i: final decision of the guest
 host_i: the door opened by the host
 '''
 #users choose a door
 choose_i = random.randint(0,2)
 doors = doors_array()[0]
 gift_i = doors_array()[1]
 # host open the door
 host_i = -1
 for i in range(len(doors)):
 if doors[i] != 1 and i != choose_i:
 host_i = i
 break
 # user1 -- unchange
 if change == 'unchange':
 win_unchange_nums = 0
 if doors[choose_i] == 1:
 win_unchange_nums +=1
 change_choose_i = choose_i
 return win_unchange_nums,choose_i,gift_i,change_choose_i,host_i

 if change == 'change':
 win_change_nums = 0
 for i in range(len(doors)):
 if i != host_i and i != choose_i:
 change_choose_i = i
 if doors[change_choose_i] == 1:
 win_change_nums+=1
 return win_change_nums,choose_i,gift_i,change_choose_i,host_i

In [12]: # get the results
def total_results(times,change_or_not,doors_array,win_loose):
 '''
 the function is designed for help us to run the model multiple times and collect results

 Args:
 times: how many times we play
 change_or_not: the string that represented change the door or not
 doors_array: the function that represented initilize the door list
 win_loose: the function that generate the result of each time

 Outputs:
 total_door: the list represented the three doors
 win_or_lose: the result of playing the game
 open_door: the user's initial choice
 gift_door: the door that hide the gift
 host_door: the door opened by the host
 final_open: the user's final decision
 prob_win: the probability of winning the game

 '''
 times_num = times

 # Behind Door
 total_door = []

 # if the car(1) behind the door, get 1 point; if the sheep(0) behind the door, get 0 point
 win_or_lose = []

 # initial choice of the door

Text(0, 0.5, 'Score')

 open_door = []

 # the gift behind this door
 gift_door = []

 # the door opened by the host
 host_door = []

 # final decision of the user
 final_open = []
 for i in range(times):
 total_door.append(doors_array()[0])
 doors_result = win_loose(doors_array,change_or_not)
 win_or_lose.append(doors_result[0])
 open_door.append(doors_result[1])
 gift_door.append(doors_result[2])
 final_open.append(doors_result[3])
 host_door.append(doors_result[4])

 #the probability of win the game (the car behind the door)
 prob_win = sum(win_or_lose)/times

 return total_door,win_or_lose,open_door,gift_door,host_door,final_open, prob_win

In []:

In [13]: #generate a table to visualize results
times = 100
total_unchange_result = total_results(times,'unchange',doors_array,win_loose)
unchange_result = pd.DataFrame({'Behind Door':total_unchange_result[0],
 'Unchange: Initial Choice':total_unchange_result[2],
 'Unchange: Host Choice':total_unchange_result[4],
 'Unchange: Final Decision': total_unchange_result[5],
 'Unchange: Gift': total_unchange_result[3],
 'Unchange: Win or Lose':total_unchange_result[1]})
prob_win_unchange = total_unchange_result[-1]

total_change_result = total_results(times,'change',doors_array,win_loose)
change_result = pd.DataFrame({'Behind Door':total_change_result[0],
 'Change: Initial Choice':total_change_result[2],
 'Change: Host Choice':total_change_result[4],
 'Change: Final Decision': total_change_result[5],
 'Change: Gift': total_change_result[3],
 'Change: Win or Lose':total_change_result[1]})
prob_win_change = total_change_result[-1]

In [19]: # plot the results for one sub sample
plt.figure(figsize=(15,6))
plt.plot([prob_win_unchange]*times,color = 'black',label = 'The probabilty of win the game if unchange the door')
plt.scatter(range(times),unchange_result['Unchange: Win or Lose'],color = 'black',label = 'Unhange the Door:{}'.format
plt.plot([prob_win_change]*times,color = 'pink',label = 'The probabilty of win the game if change the door')
plt.scatter(range(times),change_result['Change: Win or Lose'],color = 'pink',label = 'Change the Door:{}'.format(prob_
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.title('Unchange Vs Change the Door')
plt.xlabel('Times')
plt.ylabel('Score')

Out[19]:

In [17]: unchange_result

(0.0, 1.0)

Out[17]:

In [18]: change_result

Out[18]:

In [75]: # statisical analysis

In [76]: def average_win(total_results,times,change_or_not,doors_array,win_loose):
 '''
 the function is help us to calculate the average probability of winning the gift

 output:
 result: the list represented the probability of winning the game of each sub sample
 avg_prob: the average probability of winning the game
 '''
 result = []
 for i in range(times):
 total_result = total_results(times,change_or_not,doors_array,win_loose)
 result.append(total_result[-1])
 avg_prob = round(sum(result)/len(result),4)
 return result, avg_prob

In [77]: times = 1000
unchange_result = average_win(total_results,times,'unchange',doors_array,win_loose)[0]
unchange_avg_prob = average_win(total_results,times,'unchange',doors_array,win_loose)[1]
change_result = average_win(total_results,times,'change',doors_array,win_loose)[0]
change_avg_prob = average_win(total_results,times,'change',doors_array,win_loose)[1]

In [78]: plt.figure(figsize=(10,6))
plt.plot(change_result,color = 'khaki',label = 'The probabilty of win the game if change the door')
plt.plot([change_avg_prob]*times,color = 'olive',label = 'Swithcing Strategy:{}'.format(change_avg_prob))
plt.plot(unchange_result,color = 'bisque',label = 'The probabilty of win the game if unchange the door')
plt.plot([unchange_avg_prob]*times,color = 'darkorange',label = 'Sticking Strategy:{}'.format(unchange_avg_prob))
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.title('Unchange Vs Change the Door')
plt.xlabel('Times')
plt.ylabel('Score')
plt.ylim(0, 1)

Out[78]:

In []:

In []:

Appendix B React Code

