EntityMatching / EntityMatching.py
Clémentine
init
3a5e074
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Covid Dialog dataset in English and Chinese"""
import copy
import os
import re
import textwrap
import json
import datasets
# BibTeX citation
_CITATION = """
@inproceedings{mudgal2018deep,
title={Deep learning for entity matching: A design space exploration},
author={Mudgal, Sidharth and Li, Han and Rekatsinas, Theodoros and Doan, AnHai and Park, Youngchoon and Krishnan, Ganesh and Deep, Rohit and Arcaute, Esteban and Raghavendra, Vijay},
booktitle={Proceedings of the 2018 International Conference on Management of Data},
pages={19--34},
year={2018}
}
"""
# Official description of the dataset
_DESCRIPTION = textwrap.dedent(
"""
"""
)
# Link to an official homepage for the dataset here
_HOMEPAGE = "https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md"
_LICENSE = ""
import datasets
import os
import json
names = ["Beer", "iTunes_Amazon", "Fodors_Zagats", "DBLP_ACM", "DBLP_GoogleScholar", "Amazon_Google", "Walmart_Amazon", "Abt_Buy", "Company", "Dirty_iTunes_Amazon", "Dirty_DBLP_ACM", "Dirty_DBLP_GoogleScholar", "Dirty_Walmart_Amazon"]
class EntityMatching(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [datasets.BuilderConfig(name=name, version=datasets.Version("1.0.0"), description=_DESCRIPTION) for name in names]
def _info(self):
features = datasets.Features(
{
"productA": datasets.Value("string"),
"productB": datasets.Value("string"),
"same": datasets.Value("bool_"),
}
)
return datasets.DatasetInfo(
description=f"EntityMatching dataset, as preprocessed and shuffled in HELM",
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
test = dl_manager.download(os.path.join(self.config.name, "test.jsonl"))
train = dl_manager.download(os.path.join(self.config.name, "train.jsonl"))
val = dl_manager.download(os.path.join(self.config.name, "valid.jsonl"))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"file": train},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"file": val},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"file": test},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, file):
with open(file, encoding="utf-8") as f:
for ix, line in enumerate(f):
yield ix, json.loads(line)