File size: 1,432 Bytes
e591af8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import csv
import datasets
from datasets.tasks import TextClassification
_TRAIN_DOWNLOAD_URL = "https://huggingface.co/datasets/linxinyuan/cola/resolve/main/train.csv"
_TEST_DOWNLOAD_URL = "https://huggingface.co/datasets/linxinyuan/cola/resolve/main/test.csv"
class mind(datasets.GeneratorBasedBuilder):
def _info(self):
return datasets.DatasetInfo(
description="cola",
features=datasets.Features(
{
"text": datasets.Value("string"),
"label": datasets.features.ClassLabel(names=['0', '1']),
}
),
task_templates=[TextClassification(text_column="text", label_column="label")],
)
def _split_generators(self, dl_manager):
train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL)
test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}),
]
def _generate_examples(self, filepath):
with open(filepath, encoding="utf-8") as csv_file:
csv_reader = csv.reader(csv_file, delimiter="\t")
for id_, row in enumerate(csv_reader):
yield id_, {"text": row[3], "label": (int)(row[1])}
|