File size: 3,925 Bytes
471bb69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
import json
import datasets
import os
logger = datasets.logging.get_logger(__name__)
class Dataset(datasets.GeneratorBasedBuilder):
def _info(self):
return datasets.DatasetInfo(
features=datasets.Features({
"images": datasets.Sequence(datasets.Image()),
"id": datasets.Value("int32"),
"conversations": datasets.Sequence(datasets.Features({
"from": datasets.Value("string"),
"value": datasets.Value("string")
}))
})
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
dl_manager.download_config.token = True
dl_manager.download_config.num_proc = 10
base_url = "https://huggingface.co/datasets/empower-dev-staging/cord/resolve/main/data"
train_image_files = dl_manager.download_and_extract(
f"{base_url}/train/train.tar.gz"
)
test_image_files = dl_manager.download_and_extract(
f"{base_url}/test/test.tar.gz"
)
image_files = train_image_files + test_image_files
image_file_to_full_path_mapping = dict([
('images/' + '/'.join(image_file.split('/')[-2:]), image_file) for image_file in dl_manager.iter_files(image_files)
])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": dl_manager.download_and_extract(
f"{base_url}/train.jsonl"),
"image_file_to_full_path_mapping": image_file_to_full_path_mapping
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": dl_manager.download_and_extract(
f"{base_url}/test.jsonl"),
"image_file_to_full_path_mapping": image_file_to_full_path_mapping
},
),
]
def _get_step_info(self, item):
first_image_path = item['images'][0]
folder = '/'.join(first_image_path.split('/')[-2:-1])
task = folder.split('-')[0]
step = folder.split('-')[1].split('_')
step_number = step[0]
retry_index = int(step[1])
return {
"task_name": task,
"step_name": f"{task}-{step_number}",
"retry_index": retry_index
}
def _generate_examples(self, filepath, image_file_to_full_path_mapping):
with open(filepath, "r") as f:
lines = f.readlines()
items = []
step_name_to_retry_count = {}
for id, line in enumerate(lines):
item = json.loads(line)
if len(json.loads(item["conversations"][1]["value"])["actions"]) == 0:
continue
items.append(item)
step_name = self._get_step_info(item)["step_name"]
if step_name not in step_name_to_retry_count:
step_name_to_retry_count[step_name] = 0
step_name_to_retry_count[step_name] += 1
for id, item in enumerate(items):
step_info = self._get_step_info(item)
yield id, {
"images": [
image_file_to_full_path_mapping[image] for image in item["images"]
],
"conversations": item["conversations"],
"length": item["length"],
"task_name": step_info["task_name"],
"step_name": step_info["step_name"],
"has_retry": step_name_to_retry_count[step_info['step_name']] > 1,
"retry_index": step_info["retry_index"],
"total_retries": step_name_to_retry_count[step_info['step_name']]
}
|