File size: 13,757 Bytes
85d7559 7998590 85d7559 7998590 85d7559 7998590 85d7559 eb8aaf8 85d7559 62b3730 85d7559 62b3730 85d7559 62b3730 85d7559 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
"""
This code is licensed under CC-BY-4.0 from the original work by shunk031.
The code is adapted from https://huggingface.co/datasets/shunk031/JGLUE/blob/main/JGLUE.py
with minor modifications to the code structure.
"""
import json
from typing import Optional
import datasets as ds
import pandas as pd
from .preprocess_marc_ja import preprocess_marc_ja, MarcJaConfig
_CITATION = """\
@inproceedings{kurihara-etal-2022-jglue,
title = "{JGLUE}: {J}apanese General Language Understanding Evaluation",
author = "Kurihara, Kentaro and
Kawahara, Daisuke and
Shibata, Tomohide",
booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.lrec-1.317",
pages = "2957--2966",
abstract = "To develop high-performance natural language understanding (NLU) models, it is necessary to have a benchmark to evaluate and analyze NLU ability from various perspectives. While the English NLU benchmark, GLUE, has been the forerunner, benchmarks are now being released for languages other than English, such as CLUE for Chinese and FLUE for French; but there is no such benchmark for Japanese. We build a Japanese NLU benchmark, JGLUE, from scratch without translation to measure the general NLU ability in Japanese. We hope that JGLUE will facilitate NLU research in Japanese.",
}
@InProceedings{Kurihara_nlp2022,
author = "栗原健太郎 and 河原大輔 and 柴田知秀",
title = "JGLUE: 日本語言語理解ベンチマーク",
booktitle = "言語処理学会第28回年次大会",
year = "2022",
url = "https://www.anlp.jp/proceedings/annual_meeting/2022/pdf_dir/E8-4.pdf"
note= "in Japanese"
}
"""
_DESCRIPTION = """\
JGLUE, Japanese General Language Understanding Evaluation, is built to measure the general NLU ability in Japanese. JGLUE has been constructed from scratch without translation. We hope that JGLUE will facilitate NLU research in Japanese.
"""
_HOMEPAGE = "https://github.com/yahoojapan/JGLUE"
_LICENSE = """\
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
"""
_DESCRIPTION_CONFIGS = {
"MARC-ja": "MARC-ja is a dataset of the text classification task. This dataset is based on the Japanese portion of Multilingual Amazon Reviews Corpus (MARC) (Keung+, 2020).",
"JSTS": "JSTS is a Japanese version of the STS (Semantic Textual Similarity) dataset. STS is a task to estimate the semantic similarity of a sentence pair.",
"JNLI": "JNLI is a Japanese version of the NLI (Natural Language Inference) dataset. NLI is a task to recognize the inference relation that a premise sentence has to a hypothesis sentence.",
"JSQuAD": "JSQuAD is a Japanese version of SQuAD (Rajpurkar+, 2016), one of the datasets of reading comprehension.",
"JCommonsenseQA": "JCommonsenseQA is a Japanese version of CommonsenseQA (Talmor+, 2019), which is a multiple-choice question answering dataset that requires commonsense reasoning ability.",
}
_URLS = {
"MARC-ja": {
"data": "https://s3.amazonaws.com/amazon-reviews-pds/tsv/amazon_reviews_multilingual_JP_v1_00.tsv.gz",
"filter_review_id_list": {
"valid": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/preprocess/marc-ja/data/filter_review_id_list/valid.txt"
},
"label_conv_review_id_list": {
"valid": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/preprocess/marc-ja/data/label_conv_review_id_list/valid.txt"
},
},
"JSTS": {
"train": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jsts-v1.1/train-v1.1.json",
"valid": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jsts-v1.1/valid-v1.1.json",
},
"JNLI": {
"train": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jnli-v1.1/train-v1.1.json",
"valid": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jnli-v1.1/valid-v1.1.json",
},
"JSQuAD": {
"train": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jsquad-v1.1/train-v1.1.json",
"valid": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jsquad-v1.1/valid-v1.1.json",
},
"JCommonsenseQA": {
"train": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jcommonsenseqa-v1.1/train-v1.1.json",
"valid": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jcommonsenseqa-v1.1/valid-v1.1.json",
},
}
def dataset_info_jsts() -> ds.DatasetInfo:
features = ds.Features(
{
"sentence_pair_id": ds.Value("string"),
"yjcaptions_id": ds.Value("string"),
"sentence1": ds.Value("string"),
"sentence2": ds.Value("string"),
"label": ds.Value("float"),
}
)
return ds.DatasetInfo(
description=_DESCRIPTION,
citation=_CITATION,
homepage=_HOMEPAGE,
license=_LICENSE,
features=features,
)
def dataset_info_jnli() -> ds.DatasetInfo:
features = ds.Features(
{
"sentence_pair_id": ds.Value("string"),
"yjcaptions_id": ds.Value("string"),
"sentence1": ds.Value("string"),
"sentence2": ds.Value("string"),
"label": ds.ClassLabel(num_classes=3, names=["entailment", "contradiction", "neutral"]),
}
)
return ds.DatasetInfo(
description=_DESCRIPTION,
citation=_CITATION,
homepage=_HOMEPAGE,
license=_LICENSE,
features=features,
supervised_keys=None,
)
def dataset_info_jsquad() -> ds.DatasetInfo:
features = ds.Features(
{
"id": ds.Value("string"),
"title": ds.Value("string"),
"context": ds.Value("string"),
"question": ds.Value("string"),
"answers": ds.Sequence({"text": ds.Value("string"), "answer_start": ds.Value("int32")}),
"is_impossible": ds.Value("bool"),
}
)
return ds.DatasetInfo(
description=_DESCRIPTION,
citation=_CITATION,
homepage=_HOMEPAGE,
license=_LICENSE,
features=features,
supervised_keys=None,
)
def dataset_info_jcommonsenseqa() -> ds.DatasetInfo:
features = ds.Features(
{
"q_id": ds.Value("int64"),
"question": ds.Value("string"),
"choice0": ds.Value("string"),
"choice1": ds.Value("string"),
"choice2": ds.Value("string"),
"choice3": ds.Value("string"),
"choice4": ds.Value("string"),
"label": ds.ClassLabel(
num_classes=5,
names=["choice0", "choice1", "choice2", "choice3", "choice4"],
),
}
)
return ds.DatasetInfo(
description=_DESCRIPTION,
citation=_CITATION,
homepage=_HOMEPAGE,
license=_LICENSE,
features=features,
)
def dataset_info_marc_ja(remove_netural: bool) -> ds.DatasetInfo:
labels = ["positive", "negative"] if remove_netural else ["positive", "negative", "neutral"]
features = ds.Features(
{
"sentence": ds.Value("string"),
"label": ds.ClassLabel(num_classes=len(labels), names=labels),
"review_id": ds.Value("string"),
}
)
return ds.DatasetInfo(
description=_DESCRIPTION,
citation=_CITATION,
homepage=_HOMEPAGE,
license=_LICENSE,
features=features,
)
class JGLUE(ds.GeneratorBasedBuilder):
VERSION = ds.Version("1.1.0")
BUILDER_CONFIGS = [
MarcJaConfig(
name="MARC-ja",
version=VERSION,
description=_DESCRIPTION_CONFIGS["MARC-ja"],
),
ds.BuilderConfig(
name="JSTS",
version=VERSION,
description=_DESCRIPTION_CONFIGS["JSTS"],
),
ds.BuilderConfig(
name="JNLI",
version=VERSION,
description=_DESCRIPTION_CONFIGS["JNLI"],
),
ds.BuilderConfig(
name="JSQuAD",
version=VERSION,
description=_DESCRIPTION_CONFIGS["JSQuAD"],
),
ds.BuilderConfig(
name="JCommonsenseQA",
version=VERSION,
description=_DESCRIPTION_CONFIGS["JCommonsenseQA"],
),
]
def _info(self) -> ds.DatasetInfo:
if self.config.name == "JSTS":
return dataset_info_jsts()
elif self.config.name == "JNLI":
return dataset_info_jnli()
elif self.config.name == "JSQuAD":
return dataset_info_jsquad()
elif self.config.name == "JCommonsenseQA":
return dataset_info_jcommonsenseqa()
elif self.config.name == "MARC-ja":
return dataset_info_marc_ja(self.config.remove_netural)
else:
raise ValueError(f"Invalid config name: {self.config.name}")
def __split_generators_marc_ja(self, dl_manager: ds.DownloadManager):
raise RuntimeError(
"The Amazon Review Dataset is currently no longer public. "
"For sentiment analysis, consider using the `llm-book/wrime-sentiment` dataset instead."
)
file_paths = dl_manager.download_and_extract(_URLS[self.config.name])
filter_review_id_list = file_paths["filter_review_id_list"]
label_conv_review_id_list = file_paths["label_conv_review_id_list"]
split_dfs = preprocess_marc_ja(
config=self.config,
data_file_path=file_paths["data"],
filter_review_id_list_paths=filter_review_id_list,
label_conv_review_id_list_paths=label_conv_review_id_list,
)
return [
ds.SplitGenerator(
name=ds.Split.TRAIN,
gen_kwargs={"split_df": split_dfs["train"]},
),
ds.SplitGenerator(
name=ds.Split.VALIDATION,
gen_kwargs={"split_df": split_dfs["valid"]},
),
]
def __split_generators(self, dl_manager: ds.DownloadManager):
file_paths = dl_manager.download_and_extract(_URLS[self.config.name])
return [
ds.SplitGenerator(
name=ds.Split.TRAIN,
gen_kwargs={"file_path": file_paths["train"]},
),
ds.SplitGenerator(
name=ds.Split.VALIDATION,
gen_kwargs={"file_path": file_paths["valid"]},
),
]
def _split_generators(self, dl_manager: ds.DownloadManager):
if self.config.name == "MARC-ja":
return self.__split_generators_marc_ja(dl_manager)
else:
return self.__split_generators(dl_manager)
def __generate_examples_marc_ja(self, split_df: Optional[pd.DataFrame] = None):
if split_df is None:
raise ValueError(f"Invalid preprocessing for {self.config.name}")
instances = split_df.to_dict(orient="records")
for i, data_dict in enumerate(instances):
yield i, data_dict
def __generate_examples_jsquad(self, file_path: Optional[str] = None):
if file_path is None:
raise ValueError(f"Invalid argument for {self.config.name}")
with open(file_path, "r", encoding="utf-8") as rf:
json_data = json.load(rf)
for json_dict in json_data["data"]:
title = json_dict["title"]
paragraphs = json_dict["paragraphs"]
for paragraph in paragraphs:
context = paragraph["context"]
questions = paragraph["qas"]
for question_dict in questions:
q_id = question_dict["id"]
question = question_dict["question"]
answers = question_dict["answers"]
is_impossible = question_dict["is_impossible"]
example_dict = {
"id": q_id,
"title": title,
"context": context,
"question": question,
"answers": answers,
"is_impossible": is_impossible,
}
yield q_id, example_dict
def __generate_examples_jcommonsenseqa(self, file_path: Optional[str] = None):
if file_path is None:
raise ValueError(f"Invalid argument for {self.config.name}")
with open(file_path, "r", encoding="utf-8") as rf:
for i, line in enumerate(rf):
json_dict = json.loads(line)
yield i, json_dict
def __generate_examples(self, file_path: Optional[str] = None):
if file_path is None:
raise ValueError(f"Invalid argument for {self.config.name}")
with open(file_path, "r", encoding="utf-8") as rf:
for i, line in enumerate(rf):
json_dict = json.loads(line)
yield i, json_dict
def _generate_examples(
self,
file_path: Optional[str] = None,
split_df: Optional[pd.DataFrame] = None,
):
if self.config.name == "MARC-ja":
yield from self.__generate_examples_marc_ja(split_df)
elif self.config.name == "JSQuAD":
yield from self.__generate_examples_jsquad(file_path)
elif self.config.name == "JCommonsenseQA":
yield from self.__generate_examples_jcommonsenseqa(file_path)
else:
yield from self.__generate_examples(file_path)
|