File size: 13,757 Bytes
85d7559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7998590
 
85d7559
 
 
7998590
85d7559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7998590
85d7559
 
 
 
eb8aaf8
 
 
 
 
85d7559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62b3730
85d7559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62b3730
85d7559
 
 
 
 
 
 
 
62b3730
85d7559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
"""
This code is licensed under CC-BY-4.0 from the original work by shunk031.
The code is adapted from https://huggingface.co/datasets/shunk031/JGLUE/blob/main/JGLUE.py
with minor modifications to the code structure.
"""


import json
from typing import Optional

import datasets as ds
import pandas as pd

from .preprocess_marc_ja import preprocess_marc_ja, MarcJaConfig

_CITATION = """\
@inproceedings{kurihara-etal-2022-jglue,
    title = "{JGLUE}: {J}apanese General Language Understanding Evaluation",
    author = "Kurihara, Kentaro  and
      Kawahara, Daisuke  and
      Shibata, Tomohide",
    booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
    month = jun,
    year = "2022",
    address = "Marseille, France",
    publisher = "European Language Resources Association",
    url = "https://aclanthology.org/2022.lrec-1.317",
    pages = "2957--2966",
    abstract = "To develop high-performance natural language understanding (NLU) models, it is necessary to have a benchmark to evaluate and analyze NLU ability from various perspectives. While the English NLU benchmark, GLUE, has been the forerunner, benchmarks are now being released for languages other than English, such as CLUE for Chinese and FLUE for French; but there is no such benchmark for Japanese. We build a Japanese NLU benchmark, JGLUE, from scratch without translation to measure the general NLU ability in Japanese. We hope that JGLUE will facilitate NLU research in Japanese.",
}
@InProceedings{Kurihara_nlp2022,
  author = 	"栗原健太郎 and 河原大輔 and 柴田知秀",
  title = 	"JGLUE: 日本語言語理解ベンチマーク",
  booktitle = 	"言語処理学会第28回年次大会",
  year =	"2022",
  url = "https://www.anlp.jp/proceedings/annual_meeting/2022/pdf_dir/E8-4.pdf"
  note= "in Japanese"
}
"""

_DESCRIPTION = """\
JGLUE, Japanese General Language Understanding Evaluation, is built to measure the general NLU ability in Japanese. JGLUE has been constructed from scratch without translation. We hope that JGLUE will facilitate NLU research in Japanese.
"""

_HOMEPAGE = "https://github.com/yahoojapan/JGLUE"

_LICENSE = """\
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
"""

_DESCRIPTION_CONFIGS = {
    "MARC-ja": "MARC-ja is a dataset of the text classification task. This dataset is based on the Japanese portion of Multilingual Amazon Reviews Corpus (MARC) (Keung+, 2020).",
    "JSTS": "JSTS is a Japanese version of the STS (Semantic Textual Similarity) dataset. STS is a task to estimate the semantic similarity of a sentence pair.",
    "JNLI": "JNLI is a Japanese version of the NLI (Natural Language Inference) dataset. NLI is a task to recognize the inference relation that a premise sentence has to a hypothesis sentence.",
    "JSQuAD": "JSQuAD is a Japanese version of SQuAD (Rajpurkar+, 2016), one of the datasets of reading comprehension.",
    "JCommonsenseQA": "JCommonsenseQA is a Japanese version of CommonsenseQA (Talmor+, 2019), which is a multiple-choice question answering dataset that requires commonsense reasoning ability.",
}

_URLS = {
    "MARC-ja": {
        "data": "https://s3.amazonaws.com/amazon-reviews-pds/tsv/amazon_reviews_multilingual_JP_v1_00.tsv.gz",
        "filter_review_id_list": {
            "valid": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/preprocess/marc-ja/data/filter_review_id_list/valid.txt"
        },
        "label_conv_review_id_list": {
            "valid": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/preprocess/marc-ja/data/label_conv_review_id_list/valid.txt"
        },
    },
    "JSTS": {
        "train": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jsts-v1.1/train-v1.1.json",
        "valid": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jsts-v1.1/valid-v1.1.json",
    },
    "JNLI": {
        "train": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jnli-v1.1/train-v1.1.json",
        "valid": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jnli-v1.1/valid-v1.1.json",
    },
    "JSQuAD": {
        "train": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jsquad-v1.1/train-v1.1.json",
        "valid": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jsquad-v1.1/valid-v1.1.json",
    },
    "JCommonsenseQA": {
        "train": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jcommonsenseqa-v1.1/train-v1.1.json",
        "valid": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jcommonsenseqa-v1.1/valid-v1.1.json",
    },
}


def dataset_info_jsts() -> ds.DatasetInfo:
    features = ds.Features(
        {
            "sentence_pair_id": ds.Value("string"),
            "yjcaptions_id": ds.Value("string"),
            "sentence1": ds.Value("string"),
            "sentence2": ds.Value("string"),
            "label": ds.Value("float"),
        }
    )
    return ds.DatasetInfo(
        description=_DESCRIPTION,
        citation=_CITATION,
        homepage=_HOMEPAGE,
        license=_LICENSE,
        features=features,
    )


def dataset_info_jnli() -> ds.DatasetInfo:
    features = ds.Features(
        {
            "sentence_pair_id": ds.Value("string"),
            "yjcaptions_id": ds.Value("string"),
            "sentence1": ds.Value("string"),
            "sentence2": ds.Value("string"),
            "label": ds.ClassLabel(num_classes=3, names=["entailment", "contradiction", "neutral"]),
        }
    )
    return ds.DatasetInfo(
        description=_DESCRIPTION,
        citation=_CITATION,
        homepage=_HOMEPAGE,
        license=_LICENSE,
        features=features,
        supervised_keys=None,
    )


def dataset_info_jsquad() -> ds.DatasetInfo:
    features = ds.Features(
        {
            "id": ds.Value("string"),
            "title": ds.Value("string"),
            "context": ds.Value("string"),
            "question": ds.Value("string"),
            "answers": ds.Sequence({"text": ds.Value("string"), "answer_start": ds.Value("int32")}),
            "is_impossible": ds.Value("bool"),
        }
    )
    return ds.DatasetInfo(
        description=_DESCRIPTION,
        citation=_CITATION,
        homepage=_HOMEPAGE,
        license=_LICENSE,
        features=features,
        supervised_keys=None,
    )


def dataset_info_jcommonsenseqa() -> ds.DatasetInfo:
    features = ds.Features(
        {
            "q_id": ds.Value("int64"),
            "question": ds.Value("string"),
            "choice0": ds.Value("string"),
            "choice1": ds.Value("string"),
            "choice2": ds.Value("string"),
            "choice3": ds.Value("string"),
            "choice4": ds.Value("string"),
            "label": ds.ClassLabel(
                num_classes=5,
                names=["choice0", "choice1", "choice2", "choice3", "choice4"],
            ),
        }
    )
    return ds.DatasetInfo(
        description=_DESCRIPTION,
        citation=_CITATION,
        homepage=_HOMEPAGE,
        license=_LICENSE,
        features=features,
    )


def dataset_info_marc_ja(remove_netural: bool) -> ds.DatasetInfo:
    labels = ["positive", "negative"] if remove_netural else ["positive", "negative", "neutral"]
    features = ds.Features(
        {
            "sentence": ds.Value("string"),
            "label": ds.ClassLabel(num_classes=len(labels), names=labels),
            "review_id": ds.Value("string"),
        }
    )
    return ds.DatasetInfo(
        description=_DESCRIPTION,
        citation=_CITATION,
        homepage=_HOMEPAGE,
        license=_LICENSE,
        features=features,
    )


class JGLUE(ds.GeneratorBasedBuilder):
    VERSION = ds.Version("1.1.0")
    BUILDER_CONFIGS = [
        MarcJaConfig(
            name="MARC-ja",
            version=VERSION,
            description=_DESCRIPTION_CONFIGS["MARC-ja"],
        ),
        ds.BuilderConfig(
            name="JSTS",
            version=VERSION,
            description=_DESCRIPTION_CONFIGS["JSTS"],
        ),
        ds.BuilderConfig(
            name="JNLI",
            version=VERSION,
            description=_DESCRIPTION_CONFIGS["JNLI"],
        ),
        ds.BuilderConfig(
            name="JSQuAD",
            version=VERSION,
            description=_DESCRIPTION_CONFIGS["JSQuAD"],
        ),
        ds.BuilderConfig(
            name="JCommonsenseQA",
            version=VERSION,
            description=_DESCRIPTION_CONFIGS["JCommonsenseQA"],
        ),
    ]

    def _info(self) -> ds.DatasetInfo:
        if self.config.name == "JSTS":
            return dataset_info_jsts()
        elif self.config.name == "JNLI":
            return dataset_info_jnli()
        elif self.config.name == "JSQuAD":
            return dataset_info_jsquad()
        elif self.config.name == "JCommonsenseQA":
            return dataset_info_jcommonsenseqa()
        elif self.config.name == "MARC-ja":
            return dataset_info_marc_ja(self.config.remove_netural)
        else:
            raise ValueError(f"Invalid config name: {self.config.name}")

    def __split_generators_marc_ja(self, dl_manager: ds.DownloadManager):
        raise RuntimeError(
            "The Amazon Review Dataset is currently no longer public. "
            "For sentiment analysis, consider using the `llm-book/wrime-sentiment` dataset instead."
        )
        
        file_paths = dl_manager.download_and_extract(_URLS[self.config.name])

        filter_review_id_list = file_paths["filter_review_id_list"]
        label_conv_review_id_list = file_paths["label_conv_review_id_list"]

        split_dfs = preprocess_marc_ja(
            config=self.config,
            data_file_path=file_paths["data"],
            filter_review_id_list_paths=filter_review_id_list,
            label_conv_review_id_list_paths=label_conv_review_id_list,
        )
        return [
            ds.SplitGenerator(
                name=ds.Split.TRAIN,
                gen_kwargs={"split_df": split_dfs["train"]},
            ),
            ds.SplitGenerator(
                name=ds.Split.VALIDATION,
                gen_kwargs={"split_df": split_dfs["valid"]},
            ),
        ]

    def __split_generators(self, dl_manager: ds.DownloadManager):
        file_paths = dl_manager.download_and_extract(_URLS[self.config.name])
        return [
            ds.SplitGenerator(
                name=ds.Split.TRAIN,
                gen_kwargs={"file_path": file_paths["train"]},
            ),
            ds.SplitGenerator(
                name=ds.Split.VALIDATION,
                gen_kwargs={"file_path": file_paths["valid"]},
            ),
        ]

    def _split_generators(self, dl_manager: ds.DownloadManager):
        if self.config.name == "MARC-ja":
            return self.__split_generators_marc_ja(dl_manager)
        else:
            return self.__split_generators(dl_manager)

    def __generate_examples_marc_ja(self, split_df: Optional[pd.DataFrame] = None):
        if split_df is None:
            raise ValueError(f"Invalid preprocessing for {self.config.name}")

        instances = split_df.to_dict(orient="records")
        for i, data_dict in enumerate(instances):
            yield i, data_dict

    def __generate_examples_jsquad(self, file_path: Optional[str] = None):
        if file_path is None:
            raise ValueError(f"Invalid argument for {self.config.name}")

        with open(file_path, "r", encoding="utf-8") as rf:
            json_data = json.load(rf)

        for json_dict in json_data["data"]:
            title = json_dict["title"]
            paragraphs = json_dict["paragraphs"]

            for paragraph in paragraphs:
                context = paragraph["context"]
                questions = paragraph["qas"]

                for question_dict in questions:
                    q_id = question_dict["id"]
                    question = question_dict["question"]
                    answers = question_dict["answers"]
                    is_impossible = question_dict["is_impossible"]

                    example_dict = {
                        "id": q_id,
                        "title": title,
                        "context": context,
                        "question": question,
                        "answers": answers,
                        "is_impossible": is_impossible,
                    }

                    yield q_id, example_dict

    def __generate_examples_jcommonsenseqa(self, file_path: Optional[str] = None):
        if file_path is None:
            raise ValueError(f"Invalid argument for {self.config.name}")

        with open(file_path, "r", encoding="utf-8") as rf:
            for i, line in enumerate(rf):
                json_dict = json.loads(line)
                yield i, json_dict

    def __generate_examples(self, file_path: Optional[str] = None):
        if file_path is None:
            raise ValueError(f"Invalid argument for {self.config.name}")

        with open(file_path, "r", encoding="utf-8") as rf:
            for i, line in enumerate(rf):
                json_dict = json.loads(line)
                yield i, json_dict

    def _generate_examples(
        self,
        file_path: Optional[str] = None,
        split_df: Optional[pd.DataFrame] = None,
    ):
        if self.config.name == "MARC-ja":
            yield from self.__generate_examples_marc_ja(split_df)

        elif self.config.name == "JSQuAD":
            yield from self.__generate_examples_jsquad(file_path)

        elif self.config.name == "JCommonsenseQA":
            yield from self.__generate_examples_jcommonsenseqa(file_path)

        else:
            yield from self.__generate_examples(file_path)