Datasets:

Languages:
Japanese
License:
File size: 5,973 Bytes
53588e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
from __future__ import annotations

import json
from pathlib import Path
from typing import Generator

import datasets

from .base import BaseDatasetProcessor
from .chabsa import ChabsaDatasetProcessor
from .coreference import WikipediaCoreferenceDatasetProcessor
from .dependency import WikipediaDependencyDatasetProcessor
from .jamp import JAMPDatasetProcessor
from .janli import JaNLIDatasetProcessor
from .jcommonsenseqa import JCommonsenseQADatasetProcessor
from .jemhopqa import JEMHopQADatasetProcessor
from .jnli import JNLIDatasetProcessor
from .jsem import JSeMDatasetProcessor
from .jsick import JSICKDatasetProcessor
from .jsquad import JSQuADDatasetProcessor
from .jsts import JSTSDatasetProcessor
from .mawps import MawpsDatasetProcessor
from .ner import WikipediaNERDatasetProcessor
from .niilc import NIILCDatasetProcessor
from .pas import WikipediaPASDatasetProcessor
from .reading import WikipediaReadingDatasetProcessor
from .wiki_base import WikipediaBaseDatasetProcessor

_CITATION = ""
_DESCRIPTION = "These are datasets including the benchmark 'llm-jp-eval.'"
_HOMEPAGE = "https://github.com/llm-jp/llm-jp-eval/tree/v1.3.0"
_LICENSE = "This work is license under Apache-2.0 license"
_VERSION = datasets.Version("1.3.0")


class LlmJpEvalConfig(datasets.BuilderConfig):
    def __init__(
        self,
        name: str = "default",
        version: datasets.Version | str | None = _VERSION,
        data_dir: str | None = None,
        data_files: datasets.data_files.DataFilesDict | None = None,
        description: str | None = _DESCRIPTION,
        output_dir: str = "./data_llm-jp-eval",
    ) -> None:
        super().__init__(
            name=name,
            version=version,
            data_dir=data_dir,
            data_files=data_files,
            description=description,
        )
        self.output_dir = output_dir


class LlmJpEval(datasets.GeneratorBasedBuilder):

    BUILDER_CONFIGS = [
        LlmJpEvalConfig(name="jamp"),
        LlmJpEvalConfig(name="janli"),
        LlmJpEvalConfig(name="jnli"),
        LlmJpEvalConfig(name="jsem"),
        LlmJpEvalConfig(name="jsick"),
        LlmJpEvalConfig(name="jemhopqa"),
        LlmJpEvalConfig(name="niilc"),
        LlmJpEvalConfig(name="jsquad"),
        LlmJpEvalConfig(name="jcommonsenseqa"),
        LlmJpEvalConfig(name="chabsa"),
        LlmJpEvalConfig(name="wiki_reading"),
        LlmJpEvalConfig(name="wiki_ner"),
        LlmJpEvalConfig(name="wiki_dependency"),
        LlmJpEvalConfig(name="wiki_pas"),
        LlmJpEvalConfig(name="wiki_coreference"),
        LlmJpEvalConfig(name="mawps"),
        LlmJpEvalConfig(name="jsts"),
    ]

    def _info(self) -> datasets.DatasetInfo:
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            citation=_CITATION,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            features=datasets.Features(
                {
                    "input": datasets.Value("string"),
                    "output": datasets.Value("string"),
                }
            ),
        )

    def _split_generators(
        self, dl_manager: datasets.DownloadManager
    ) -> list[datasets.SplitGenerator]:
        output_dir = Path(self.config.output_dir)
        version_name = self.config.version.version_str
        dataset_name = self.config.name

        if dataset_name == "jamp":
            processor = JAMPDatasetProcessor
        elif dataset_name == "janli":
            processor = JaNLIDatasetProcessor
        elif dataset_name == "jnli":
            processor = JNLIDatasetProcessor
        elif dataset_name == "jsem":
            processor = JSeMDatasetProcessor
        elif dataset_name == "jsick":
            processor = JSICKDatasetProcessor
        elif dataset_name == "jemhopqa":
            processor = JEMHopQADatasetProcessor
        elif dataset_name == "niilc":
            processor = NIILCDatasetProcessor
        elif dataset_name == "jsquad":
            processor = JSQuADDatasetProcessor
        elif dataset_name == "jcommonsenseqa":
            processor = JCommonsenseQADatasetProcessor
        elif dataset_name == "chabsa":
            processor = ChabsaDatasetProcessor
        elif dataset_name == "wiki_reading":
            processor = WikipediaReadingDatasetProcessor
        elif dataset_name == "wiki_ner":
            processor = WikipediaNERDatasetProcessor
        elif dataset_name == "wiki_dependency":
            processor = WikipediaDependencyDatasetProcessor
        elif dataset_name == "wiki_pas":
            processor = WikipediaPASDatasetProcessor
        elif dataset_name == "wiki_coreference":
            processor = WikipediaCoreferenceDatasetProcessor
        elif dataset_name == "mawps":
            processor = MawpsDatasetProcessor
        elif dataset_name == "jsts":
            processor = JSTSDatasetProcessor

        processor(output_dir, version_name).pipeline()

        eval_dir = output_dir / version_name / "evaluation"
        with (eval_dir / "train" / f"{dataset_name}.json").open(encoding="utf-8") as f:
            train_data = json.load(f)
        with (eval_dir / "dev" / f"{dataset_name}.json").open(encoding="utf-8") as f:
            validation_data = json.load(f)
        with (eval_dir / "test" / f"{dataset_name}.json").open(encoding="utf-8") as f:
            test_data = json.load(f)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN, gen_kwargs={"data": train_data["samples"]}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"data": validation_data["samples"]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST, gen_kwargs={"data": test_data["samples"]}
            ),
        ]

    def _generate_examples(self, data: list[dict[str, str]]) -> Generator:
        for i, d in enumerate(data):
            yield i, d