Datasets:
Tasks:
Text Generation
Sub-tasks:
language-modeling
Languages:
Chinese
Size:
10K<n<100K
ArXiv:
Tags:
question-generation
License:
init
Browse files- .gitattributes +3 -0
- data/processed/test.jsonl +3 -0
- data/processed/train.jsonl +3 -0
- data/processed/validation.jsonl +3 -0
- format_squad.py +42 -0
- process.py +100 -0
- qg_zhquad.py +83 -0
.gitattributes
CHANGED
@@ -53,3 +53,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
53 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
53 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
56 |
+
data/processed/test.jsonl filter=lfs diff=lfs merge=lfs -text
|
57 |
+
data/processed/train.jsonl filter=lfs diff=lfs merge=lfs -text
|
58 |
+
data/processed/validation.jsonl filter=lfs diff=lfs merge=lfs -text
|
data/processed/test.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c97be8ad690988b11ae238bdbb26da763b28334ab6894185337037fa69b2c0d
|
3 |
+
size 38396960
|
data/processed/train.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8debcac1fbd7bc09cad41e51fa2a87b77cb69723460a70fbc167bb4431a82427
|
3 |
+
size 279350289
|
data/processed/validation.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:04ba1bbd2cc7af963535d98dbbb86ed44f99748355f1243c3ff9b4c8fc7dc3d8
|
3 |
+
size 39458227
|
format_squad.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from random import shuffle, seed
|
4 |
+
|
5 |
+
|
6 |
+
def get_dict(filepath):
|
7 |
+
output = []
|
8 |
+
with open(filepath) as f:
|
9 |
+
tmp = json.load(f)["data"]
|
10 |
+
for t in tmp:
|
11 |
+
for x in t["paragraphs"]:
|
12 |
+
context = x["context"]
|
13 |
+
for qa in x["qas"]:
|
14 |
+
if qa["is_impossible"]:
|
15 |
+
continue
|
16 |
+
answers = qa["answers"]
|
17 |
+
if len(answers) == 0:
|
18 |
+
continue
|
19 |
+
answer = answers[0]["text"]
|
20 |
+
if answer not in context:
|
21 |
+
continue
|
22 |
+
output.append({
|
23 |
+
"answer": answer,
|
24 |
+
"context": context,
|
25 |
+
"question": qa["question"]
|
26 |
+
})
|
27 |
+
return output
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
train = get_dict("dataset/train-zen-v1.0.json")
|
32 |
+
dev = get_dict("dataset/dev-zen-v1.0.json")
|
33 |
+
seed(42)
|
34 |
+
shuffle(train)
|
35 |
+
test = train[:len(dev)]
|
36 |
+
train = train[len(dev):]
|
37 |
+
with open("data/raw.train.jsonl", "w") as f:
|
38 |
+
f.write("\n".join([json.dumps(x) for x in train]))
|
39 |
+
with open("data/raw.valid.jsonl", "w") as f:
|
40 |
+
f.write("\n".join([json.dumps(x) for x in dev]))
|
41 |
+
with open("data/raw.test.jsonl", "w") as f:
|
42 |
+
f.write("\n".join([json.dumps(x) for x in test]))
|
process.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Script to process raw SQuAD file for Question Generation format
|
2 |
+
You need to run `python -m spacy download zh_core_web_sm`.
|
3 |
+
Split when uploading to dataset hub by
|
4 |
+
```
|
5 |
+
gsplit -l 3300 -d --additional-suffix=.jsonl train.jsonl train
|
6 |
+
gsplit -l 3300 -d --additional-suffix=.jsonl test.jsonl test
|
7 |
+
gsplit -l 3300 -d --additional-suffix=.jsonl dev.jsonl dev
|
8 |
+
```
|
9 |
+
"""
|
10 |
+
import json
|
11 |
+
import os
|
12 |
+
import re
|
13 |
+
from glob import glob
|
14 |
+
from tqdm import tqdm
|
15 |
+
from typing import List, Dict
|
16 |
+
|
17 |
+
import spacy
|
18 |
+
|
19 |
+
SPLITTER = spacy.load('zh_core_web_sm')
|
20 |
+
HIGHLIGHT_TOKEN = '<hl>'
|
21 |
+
|
22 |
+
|
23 |
+
def get_sentence(document: str):
|
24 |
+
return [str(s) for s in SPLITTER(document).sents]
|
25 |
+
|
26 |
+
|
27 |
+
def jsonline_reader(filename: str):
|
28 |
+
with open(filename, 'r') as f_reader:
|
29 |
+
examples = [json.loads(i) for i in f_reader.read().split('\n') if len(i) > 0]
|
30 |
+
return examples
|
31 |
+
|
32 |
+
|
33 |
+
def process_single_data(data: Dict):
|
34 |
+
""" Convert single raw json data into QG format """
|
35 |
+
example = {'question': data["question"], 'paragraph': data["context"], 'answer': data["answer"]}
|
36 |
+
|
37 |
+
# get sentence
|
38 |
+
position = example['paragraph'].find(example['answer'])
|
39 |
+
assert position != -1
|
40 |
+
before_tmp = get_sentence(example['paragraph'][:position])
|
41 |
+
if len(before_tmp) == 0:
|
42 |
+
before = ''
|
43 |
+
before_sentence = ''
|
44 |
+
else:
|
45 |
+
if before_tmp[-1].endswith('.'):
|
46 |
+
before = ' '.join(before_tmp)
|
47 |
+
before_sentence = ''
|
48 |
+
else:
|
49 |
+
before = ' '.join(before_tmp[:-1])
|
50 |
+
before_sentence = before_tmp[-1]
|
51 |
+
before_sentence = before_sentence if before_sentence.endswith(' ') else '{} '.format(before_sentence)
|
52 |
+
after_tmp = get_sentence(example['paragraph'][position + len(example['answer']):])
|
53 |
+
if len(after_tmp) == 0:
|
54 |
+
after = ''
|
55 |
+
after_sentence = ''
|
56 |
+
else:
|
57 |
+
after = ' '.join(after_tmp[1:])
|
58 |
+
after_sentence = after_tmp[0]
|
59 |
+
after_sentence = after_sentence if after_sentence.startswith(' ') else ' {}'.format(after_sentence)
|
60 |
+
example['sentence'] = '{}{}{}'.format(before_sentence, example['answer'], after_sentence)
|
61 |
+
|
62 |
+
# get paragraph_sentence
|
63 |
+
before = '' if before == '' else '{} '.format(before)
|
64 |
+
after = '' if after == '' else ' {}'.format(after)
|
65 |
+
source_text = '{0}{1} {2} {1}{3}'.format(before, HIGHLIGHT_TOKEN, example['sentence'], after)
|
66 |
+
example['paragraph_sentence'] = re.sub(r'\s+', ' ', source_text)
|
67 |
+
|
68 |
+
# get paragraph_answer
|
69 |
+
source_text = '{0}{1} {2} {1}{3}'.format(
|
70 |
+
example['paragraph'][:position], HIGHLIGHT_TOKEN, example['answer'],
|
71 |
+
example['paragraph'][position + len(example['answer']):])
|
72 |
+
example['paragraph_answer'] = re.sub(r'\s+', ' ', source_text)
|
73 |
+
|
74 |
+
# get sentence_answer
|
75 |
+
if len(before_tmp) == 0 or before_tmp[-1].endswith('.'):
|
76 |
+
before = ''
|
77 |
+
else:
|
78 |
+
before = before_tmp[-1] if before_tmp[-1].endswith(' ') else '{} '.format(before_tmp[-1])
|
79 |
+
if len(after_tmp) == 0:
|
80 |
+
after = ''
|
81 |
+
else:
|
82 |
+
after = after_tmp[0] if after_tmp[0].startswith(' ') else ' {}'.format(after_tmp[0])
|
83 |
+
source_text = '{0}{1} {2} {1}{3}'.format(before, HIGHLIGHT_TOKEN, example['answer'], after)
|
84 |
+
example['sentence_answer'] = re.sub(r'\s+', ' ', source_text)
|
85 |
+
|
86 |
+
return example
|
87 |
+
|
88 |
+
|
89 |
+
if __name__ == '__main__':
|
90 |
+
output = './data/processed'
|
91 |
+
os.makedirs(output, exist_ok=True)
|
92 |
+
path = {'train': 'data/raw.train.jsonl', 'validation': 'data/raw.valid.jsonl', 'test': 'data/raw.test.jsonl'}
|
93 |
+
for k, v in path.items():
|
94 |
+
json_data = []
|
95 |
+
for _file in sorted(glob(v)):
|
96 |
+
json_data += jsonline_reader(_file)
|
97 |
+
with open('{}/{}.jsonl'.format(output, k), 'w') as f:
|
98 |
+
for single_data in tqdm(json_data):
|
99 |
+
single_data = process_single_data(single_data)
|
100 |
+
f.write(json.dumps(single_data) + '\n')
|
qg_zhquad.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" python -c "from datasets import load_dataset;load_dataset('.')" """
|
2 |
+
import json
|
3 |
+
import datasets
|
4 |
+
|
5 |
+
logger = datasets.logging.get_logger(__name__)
|
6 |
+
_VERSION = "0.0.0"
|
7 |
+
_NAME = "qg_zhquad"
|
8 |
+
_CITATION = """
|
9 |
+
@inproceedings{ushio-etal-2022-generative,
|
10 |
+
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
|
11 |
+
author = "Ushio, Asahi and
|
12 |
+
Alva-Manchego, Fernando and
|
13 |
+
Camacho-Collados, Jose",
|
14 |
+
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
|
15 |
+
month = dec,
|
16 |
+
year = "2022",
|
17 |
+
address = "Abu Dhabi, U.A.E.",
|
18 |
+
publisher = "Association for Computational Linguistics",
|
19 |
+
}
|
20 |
+
"""
|
21 |
+
_DESCRIPTION = """[Chinese SQuAD](https://github.com/junzeng-pluto/ChineseSquad) dataset for question generation (QG) task."""
|
22 |
+
_URL = 'https://huggingface.co/datasets/lmqg/qg_zhquad/resolve/main/data/processed'
|
23 |
+
_URLS = {
|
24 |
+
str(datasets.Split.TEST): [f'{_URL}/test.jsonl'],
|
25 |
+
str(datasets.Split.TRAIN): [f'{_URL}/train.jsonl'],
|
26 |
+
str(datasets.Split.VALIDATION): [f'{_URL}/validation.jsonl'],
|
27 |
+
}
|
28 |
+
|
29 |
+
|
30 |
+
class QGZHQuADConfig(datasets.BuilderConfig):
|
31 |
+
"""BuilderConfig for SquadQG"""
|
32 |
+
|
33 |
+
def __init__(self, **kwargs):
|
34 |
+
"""BuilderConfig for SquadQG.
|
35 |
+
Args:
|
36 |
+
**kwargs: keyword arguments forwarded to super.
|
37 |
+
"""
|
38 |
+
super(QGZHQuADConfig, self).__init__(**kwargs)
|
39 |
+
|
40 |
+
|
41 |
+
class QGZHQuAD(datasets.GeneratorBasedBuilder):
|
42 |
+
|
43 |
+
BUILDER_CONFIGS = [
|
44 |
+
QGZHQuADConfig(name=_NAME, version=datasets.Version(_VERSION), description=_DESCRIPTION),
|
45 |
+
]
|
46 |
+
|
47 |
+
def _info(self):
|
48 |
+
return datasets.DatasetInfo(
|
49 |
+
description=_DESCRIPTION,
|
50 |
+
features=datasets.Features(
|
51 |
+
{
|
52 |
+
"answer": datasets.Value("string"),
|
53 |
+
"paragraph_question": datasets.Value("string"),
|
54 |
+
"question": datasets.Value("string"),
|
55 |
+
"sentence": datasets.Value("string"),
|
56 |
+
"paragraph": datasets.Value("string"),
|
57 |
+
"sentence_answer": datasets.Value("string"),
|
58 |
+
"paragraph_answer": datasets.Value("string"),
|
59 |
+
"paragraph_sentence": datasets.Value("string"),
|
60 |
+
"paragraph_id": datasets.Value("string")
|
61 |
+
}
|
62 |
+
),
|
63 |
+
supervised_keys=None,
|
64 |
+
homepage="https://github.com/asahi417/lm-question-generation"
|
65 |
+
)
|
66 |
+
|
67 |
+
def _split_generators(self, dl_manager):
|
68 |
+
downloaded_file = dl_manager.download_and_extract(_URLS)
|
69 |
+
return [datasets.SplitGenerator(name=i, gen_kwargs={"filepaths": downloaded_file[str(i)]})
|
70 |
+
for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]]
|
71 |
+
|
72 |
+
def _generate_examples(self, filepaths):
|
73 |
+
_key = 0
|
74 |
+
for filepath in filepaths:
|
75 |
+
logger.info("generating examples from = %s", filepath)
|
76 |
+
with open(filepath, encoding="utf-8") as f:
|
77 |
+
_list = f.read().split('\n')
|
78 |
+
if _list[-1] == '':
|
79 |
+
_list = _list[:-1]
|
80 |
+
for i in _list:
|
81 |
+
data = json.loads(i)
|
82 |
+
yield _key, data
|
83 |
+
_key += 1
|