import os import random from pathlib import Path import shutil import zipfile import argparse import tempfile def reorganize_dataset( zip_file: str, *, destination_dir: str = "./data", split_ratio: float = 0.8, random_seed: int = 42, remove_zip: bool = False, ) -> None: """Reorganize dataset into train and test directories. Args: zip_file (str): Path to the zip file. dest_dir (str, optional): Path to the destination directory. Defaults to './data'. train_ratio (float, optional): Ratio of data to be used for training. Defaults to 0.7. random_seed (int, optional): Random seed for reproducibility. Defaults to 42. remove_zip (bool, optional): Whether to remove the zip file after extraction. Defaults to False. Raises: ValueError: If the source directory or destination directory does not exist. ValueError: If the destination directory is not empty. """ # Convert the destination directory to a Path object dest_dir = Path(destination_dir) # Check if the source directory exists if not Path(zip_file).is_file(): raise ValueError(f"Source directory '{zip_file}' does not exist.") # Check if the destination directory is empty if dest_dir.exists() and any(dest_dir.iterdir()): raise ValueError(f"Destination directory '{dest_dir}' is not empty.") # Set the random seed for reproducibility random.seed(random_seed) # Create train and test directories in the destination directory train_dir = dest_dir / "train" test_dir = dest_dir / "test" train_dir.mkdir(parents=True, exist_ok=True) test_dir.mkdir(parents=True, exist_ok=True) # Extract the zip file to a temporary directory with tempfile.TemporaryDirectory() as temp_dir: with zipfile.ZipFile(zip_file, "r") as zip_ref: zip_ref.extractall(temp_dir) # Navigate to the animals directory inside the extracted files root_dir = Path(temp_dir) / "animals" / "animals" # Iterate through each animal directory for animal_path in root_dir.iterdir(): if animal_path.is_dir() and animal_path.name not in ["train", "test"]: # Create corresponding directories in train and test (train_dir / animal_path.name).mkdir(parents=True, exist_ok=True) (test_dir / animal_path.name).mkdir(parents=True, exist_ok=True) # Get all files in the animal directory files = [file for file in animal_path.iterdir() if file.is_file()] random.shuffle(files) # Split files into train and test sets split_index = int(len(files) * split_ratio) train_files = files[:split_index] test_files = files[split_index:] # Move files to train directory for file in train_files: dst = train_dir / animal_path.name / file.name shutil.move(str(file), str(dst)) # Move files to test directory for file in test_files: dst = test_dir / animal_path.name / file.name shutil.move(str(file), str(dst)) # Remove the zip file if the flag is set to True if remove_zip: os.remove(zip_file) print(f"Dataset reorganization complete! (Seed: {random_seed})") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Reorganize dataset.") parser.add_argument("zip_file", type=str, help="Path to the zip file.") parser.add_argument( "--destination-dir", type=str, default="./data", help="Path to the destination directory.", ) parser.add_argument( "--split-ratio", type=float, default=0.8, help="Ratio of data to be used for training.", ) parser.add_argument( "--random-seed", type=int, default=42, help="Random seed for reproducibility." ) parser.add_argument( "--remove-zip", action="store_true", help="Whether to remove the source zip archive file after extraction.", ) args = parser.parse_args() reorganize_dataset( args.zip_file, destination_dir=args.destination_dir, split_ratio=args.split_ratio, random_seed=args.random_seed, remove_zip=args.remove_zip, )