File size: 7,020 Bytes
835b8af 4d2abcd 835b8af 7063139 350347c 835b8af 7063139 835b8af 350347c 835b8af 1b45e42 835b8af 4d2abcd 835b8af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""SQUAD: The Stanford Question Answering Dataset."""
import json
import datasets
logger = datasets.logging.get_logger(__name__)
_DESCRIPTION = r"""\
SquadShifts consists of four new test sets for the Stanford Question Answering \
Dataset (SQuAD) from four different domains: Wikipedia articles, New York \
Times articles, Reddit comments, and Amazon product reviews. Each dataset \
was generated using the same data generating pipeline, Amazon Mechanical \
Turk interface, and data cleaning code as the original SQuAD v1.1 dataset. \
The "new-wikipedia" dataset measures overfitting on the original SQuAD v1.1 \
dataset. The "new-york-times", "reddit", and "amazon" datasets measure \
robustness to natural distribution shifts. We encourage SQuAD model developers \
to also evaluate their methods on these new datasets! \
"""
_LICENSE = "CC-BY-4.0"
_CITATION = """\
@InProceedings{pmlr-v119-miller20a,
title = {The Effect of Natural Distribution Shift on Question Answering Models},
author = {Miller, John and Krauth, Karl and Recht, Benjamin and Schmidt, Ludwig},
booktitle = {Proceedings of the 37th International Conference on Machine Learning},
pages = {6905--6916},
year = {2020},
editor = {III, Hal Daumé and Singh, Aarti},
volume = {119},
series = {Proceedings of Machine Learning Research},
month = {13--18 Jul},
publisher = {PMLR},
pdf = {http://proceedings.mlr.press/v119/miller20a/miller20a.pdf},
url = {https://proceedings.mlr.press/v119/miller20a.html},
}
"""
_URL = "https://raw.githubusercontent.com/modestyachts/squadshifts-website/master/datasets/"
_URLS = {
"new_wiki": _URL + "new_wiki_v1.0.json",
"nyt": _URL + "nyt_v1.0.json",
"reddit": _URL + "reddit_v1.0.json",
"amazon": _URL + "amazon_reviews_v1.0.json",
}
class SquadShiftsConfig(datasets.BuilderConfig):
"""BuilderConfig for SquadShifts."""
def __init__(self, **kwargs):
"""BuilderConfig for SQUAD.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(SquadShiftsConfig, self).__init__(**kwargs)
class SquadShifts(datasets.GeneratorBasedBuilder):
"""SquadShifts consists of four new test sets for the SQUAD dataset."""
BUILDER_CONFIGS = [
SquadShiftsConfig(
name="new_wiki",
version=datasets.Version("1.0.0", ""),
description="SQuADShifts New Wikipedia article dataset",
),
SquadShiftsConfig(
name="nyt",
version=datasets.Version("1.0.0", ""),
description="SQuADShifts New York Times article dataset.",
),
SquadShiftsConfig(
name="reddit",
version=datasets.Version("1.0.0", ""),
description="SQuADShifts Reddit comment dataset.",
),
SquadShiftsConfig(
name="amazon",
version=datasets.Version("1.0.0", ""),
description="SQuADShifts Amazon product review dataset.",
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"title": datasets.Value("string"),
"context": datasets.Value("string"),
"question": datasets.Value("string"),
"answers": datasets.features.Sequence(
{
"text": datasets.Value("string"),
"answer_start": datasets.Value("int32"),
}
),
}
),
homepage="https://modestyachts.github.io/squadshifts-website/index.html",
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
urls_to_download = _URLS
downloaded_files = dl_manager.download_and_extract(urls_to_download)
if self.config.name == "new_wiki" or self.config.name == "default":
return [
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["new_wiki"]}
),
]
elif self.config.name == "nyt":
return [
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["nyt"]}),
]
elif self.config.name == "reddit":
return [
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["reddit"]}),
]
elif self.config.name == "amazon":
return [
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["amazon"]}),
]
else:
raise ValueError(f"SQuADShifts dataset name {self.config.name} not found!")
def _generate_examples(self, filepath):
"""This function returns the examples in the raw (text) form."""
logger.info("generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
squad = json.load(f)
for article in squad["data"]:
title = article.get("title", "").strip()
for paragraph in article["paragraphs"]:
context = paragraph["context"].strip()
for qa in paragraph["qas"]:
question = qa["question"].strip()
id_ = qa["id"]
answer_starts = [answer["answer_start"] for answer in qa["answers"]]
answers = [answer["text"].strip() for answer in qa["answers"]]
# Features currently used are "context", "question", and "answers".
# Others are extracted here for the ease of future expansions.
yield id_, {
"title": title,
"context": context,
"question": question,
"id": id_,
"answers": {
"answer_start": answer_starts,
"text": answers,
},
}
|