albertvillanova
HF staff
Fix license/citation information of squadshifts dataset card (#5054)
7063139
# coding=utf-8 | |
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
"""SQUAD: The Stanford Question Answering Dataset.""" | |
import json | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
_DESCRIPTION = r"""\ | |
SquadShifts consists of four new test sets for the Stanford Question Answering \ | |
Dataset (SQuAD) from four different domains: Wikipedia articles, New York \ | |
Times articles, Reddit comments, and Amazon product reviews. Each dataset \ | |
was generated using the same data generating pipeline, Amazon Mechanical \ | |
Turk interface, and data cleaning code as the original SQuAD v1.1 dataset. \ | |
The "new-wikipedia" dataset measures overfitting on the original SQuAD v1.1 \ | |
dataset. The "new-york-times", "reddit", and "amazon" datasets measure \ | |
robustness to natural distribution shifts. We encourage SQuAD model developers \ | |
to also evaluate their methods on these new datasets! \ | |
""" | |
_LICENSE = "CC-BY-4.0" | |
_CITATION = """\ | |
@InProceedings{pmlr-v119-miller20a, | |
title = {The Effect of Natural Distribution Shift on Question Answering Models}, | |
author = {Miller, John and Krauth, Karl and Recht, Benjamin and Schmidt, Ludwig}, | |
booktitle = {Proceedings of the 37th International Conference on Machine Learning}, | |
pages = {6905--6916}, | |
year = {2020}, | |
editor = {III, Hal Daumé and Singh, Aarti}, | |
volume = {119}, | |
series = {Proceedings of Machine Learning Research}, | |
month = {13--18 Jul}, | |
publisher = {PMLR}, | |
pdf = {http://proceedings.mlr.press/v119/miller20a/miller20a.pdf}, | |
url = {https://proceedings.mlr.press/v119/miller20a.html}, | |
} | |
""" | |
_URL = "https://raw.githubusercontent.com/modestyachts/squadshifts-website/master/datasets/" | |
_URLS = { | |
"new_wiki": _URL + "new_wiki_v1.0.json", | |
"nyt": _URL + "nyt_v1.0.json", | |
"reddit": _URL + "reddit_v1.0.json", | |
"amazon": _URL + "amazon_reviews_v1.0.json", | |
} | |
class SquadShiftsConfig(datasets.BuilderConfig): | |
"""BuilderConfig for SquadShifts.""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig for SQUAD. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(SquadShiftsConfig, self).__init__(**kwargs) | |
class SquadShifts(datasets.GeneratorBasedBuilder): | |
"""SquadShifts consists of four new test sets for the SQUAD dataset.""" | |
BUILDER_CONFIGS = [ | |
SquadShiftsConfig( | |
name="new_wiki", | |
version=datasets.Version("1.0.0", ""), | |
description="SQuADShifts New Wikipedia article dataset", | |
), | |
SquadShiftsConfig( | |
name="nyt", | |
version=datasets.Version("1.0.0", ""), | |
description="SQuADShifts New York Times article dataset.", | |
), | |
SquadShiftsConfig( | |
name="reddit", | |
version=datasets.Version("1.0.0", ""), | |
description="SQuADShifts Reddit comment dataset.", | |
), | |
SquadShiftsConfig( | |
name="amazon", | |
version=datasets.Version("1.0.0", ""), | |
description="SQuADShifts Amazon product review dataset.", | |
), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"title": datasets.Value("string"), | |
"context": datasets.Value("string"), | |
"question": datasets.Value("string"), | |
"answers": datasets.features.Sequence( | |
{ | |
"text": datasets.Value("string"), | |
"answer_start": datasets.Value("int32"), | |
} | |
), | |
} | |
), | |
homepage="https://modestyachts.github.io/squadshifts-website/index.html", | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
urls_to_download = _URLS | |
downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
if self.config.name == "new_wiki" or self.config.name == "default": | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["new_wiki"]} | |
), | |
] | |
elif self.config.name == "nyt": | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["nyt"]}), | |
] | |
elif self.config.name == "reddit": | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["reddit"]}), | |
] | |
elif self.config.name == "amazon": | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["amazon"]}), | |
] | |
else: | |
raise ValueError(f"SQuADShifts dataset name {self.config.name} not found!") | |
def _generate_examples(self, filepath): | |
"""This function returns the examples in the raw (text) form.""" | |
logger.info("generating examples from = %s", filepath) | |
with open(filepath, encoding="utf-8") as f: | |
squad = json.load(f) | |
for article in squad["data"]: | |
title = article.get("title", "").strip() | |
for paragraph in article["paragraphs"]: | |
context = paragraph["context"].strip() | |
for qa in paragraph["qas"]: | |
question = qa["question"].strip() | |
id_ = qa["id"] | |
answer_starts = [answer["answer_start"] for answer in qa["answers"]] | |
answers = [answer["text"].strip() for answer in qa["answers"]] | |
# Features currently used are "context", "question", and "answers". | |
# Others are extracted here for the ease of future expansions. | |
yield id_, { | |
"title": title, | |
"context": context, | |
"question": question, | |
"id": id_, | |
"answers": { | |
"answer_start": answer_starts, | |
"text": answers, | |
}, | |
} | |