File size: 8,261 Bytes
a07b3b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Polish Summaries Corpus: the corpus of Polish news summaries"""
from __future__ import absolute_import, division, print_function
import glob
import xml.etree.ElementTree as ET
import datasets
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@inproceedings{
ogro:kop:14:lrec,
author = "Ogrodniczuk, Maciej and Kopeć, Mateusz",
pdf = "http://nlp.ipipan.waw.pl/Bib/ogro:kop:14:lrec.pdf",
title = "The {P}olish {S}ummaries {C}orpus",
pages = "3712--3715",
crossref = "lrec:14"
}
@proceedings{
lrec:14,
editor = "Calzolari, Nicoletta and Choukri, Khalid and Declerck, Thierry and Loftsson, Hrafn and Maegaard, Bente and Mariani, Joseph and Moreno, Asuncion and Odijk, Jan and Piperidis, Stelios",
isbn = "978-2-9517408-8-4",
title = "Proceedings of the Ninth International {C}onference on {L}anguage {R}esources and {E}valuation, {LREC}~2014",
url = "http://www.lrec-conf.org/proceedings/lrec2014/index.html",
booktitle = "Proceedings of the Ninth International {C}onference on {L}anguage {R}esources and {E}valuation, {LREC}~2014",
address = "Reykjavík, Iceland",
key = "LREC",
year = "2014",
organization = "European Language Resources Association (ELRA)"
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
Polish Summaries Corpus: the corpus of Polish news summaries.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "http://zil.ipipan.waw.pl/PolishSummariesCorpus"
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = "CC BY v.3"
# TODO: Add link to the official dataset URLs here
# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URL = "http://zil.ipipan.waw.pl/PolishSummariesCorpus?action=AttachFile&do=get&target=PSC_1.0.zip"
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class Polsum(datasets.GeneratorBasedBuilder):
"""Polish Summaries Corpus: the corpus of Polish news summaries."""
VERSION = datasets.Version("1.1.0")
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("string"),
"date": datasets.Value("string"),
"title": datasets.Value("string"),
"section": datasets.Value("string"),
"authors": datasets.Value("string"),
"body": datasets.Value("string"),
"summaries": datasets.features.Sequence(
{
"ratio": datasets.Value("int32"),
"type": datasets.Value("string"),
"author": datasets.Value("string"),
"body": datasets.Value("string"),
"spans": datasets.features.Sequence(
{
"start": datasets.Value("int32"),
"end": datasets.Value("int32"),
"span_text": datasets.Value("string"),
}
),
}
),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
data_dir = dl_manager.download_and_extract(_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepaths": glob.glob(data_dir + "/*/*/*.xml"),
},
),
]
def _generate_examples(self, filepaths):
""" Yields examples. """
# TODO: This method will receive as arguments the `gen_kwargs` defined in the previous `_split_generators` method.
# It is in charge of opening the given file and yielding (key, example) tuples from the dataset
# The key is not important, it's more here for legacy reason (legacy from tfds)
for i, xml_path in enumerate(sorted(filepaths)):
root = ET.parse(xml_path).getroot()
text_id = root.get("id")
date_tag = root.find("date")
date = date_tag.text.strip()
title_tag = root.find("title")
title = title_tag.text.strip()
section_tag = root.find("section")
section = section_tag.text.strip()
authors_tag = root.find("authors")
authors = authors_tag.text.strip()
body_tag = root.find("body")
body = body_tag.text.strip()
summaries_tag = root.find("summaries")
summaries = []
for summary_tag in summaries_tag.iterfind("summary"):
sratio = int(summary_tag.get("ratio"))
stype = summary_tag.get("type")
sauthor = summary_tag.get("author")
sbody_tag = summary_tag.find("body")
sbody = sbody_tag.text.strip()
spans_tag = summary_tag.find("spans")
spans = []
if spans_tag:
for span_tag in spans_tag.iterfind("span"):
start = int(span_tag.get("start"))
end = int(span_tag.get("end"))
span_text = span_tag.text.strip()
spans.append(
{
"start": start,
"end": end,
"span_text": span_text,
}
)
summaries.append(
{
"ratio": sratio,
"type": stype,
"author": sauthor,
"body": sbody,
"spans": spans,
}
)
yield i, {
"id": text_id,
"date": date,
"title": title,
"section": section,
"authors": authors,
"body": body,
"summaries": summaries,
}
|