Upload folder using huggingface_hub
Browse files- README.md +79 -94
- SETH-test.iob +0 -0
- SETH-train.iob +0 -0
- explorationFile.ipynb +0 -0
- seth.py +158 -0
README.md
CHANGED
@@ -1,96 +1,81 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
---
|
8 |
-
# Dataset Card for SETH Dataset
|
9 |
-
|
10 |
-
<!-- Provide a quick summary of the dataset. -->
|
11 |
-
|
12 |
-
This is a dataset used to apply the DistilBert for NER Task in the Advanced Machine Learing and XAI course of the DHBW CAS in Heilbronn
|
13 |
-
|
14 |
-
## Dataset Details
|
15 |
-
|
16 |
-
### Dataset Description
|
17 |
-
|
18 |
-
<!-- Provide a longer summary of what this dataset is. -->
|
19 |
-
The Dataset is based on the Data that is Provided by the [Github Repositoriy](https://github.com/Erechtheus/mutationCorpora)
|
20 |
-
|
21 |
-
|
22 |
-
### Dataset Sources [optional]
|
23 |
-
|
24 |
-
<!-- Provide the basic links for the dataset. -->
|
25 |
-
|
26 |
-
- **Repository:** [Source of the Dataset](https://github.com/Erechtheus/mutationCorpora/tree/master/corpora/IOB)
|
27 |
-
- **Information about Dataset:** [Datset Information](https://rockt.github.io/SETH/)
|
28 |
-
|
29 |
-
## Uses
|
30 |
-
|
31 |
-
<!-- Address questions around how the dataset is intended to be used. -->
|
32 |
-
Used for the Advanced Machine Learining and XAI course of DHBW CAS in Heilbronn
|
33 |
-
|
34 |
-
### Direct Use
|
35 |
-
|
36 |
-
<!-- This section describes suitable use cases for the dataset. -->
|
37 |
-
tbd
|
38 |
-
[More Information Needed]
|
39 |
-
|
40 |
-
### Out-of-Scope Use
|
41 |
-
|
42 |
-
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
|
43 |
-
tbd
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
## Dataset Structure
|
47 |
-
|
48 |
-
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
|
49 |
-
tbd
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
## Dataset Creation
|
53 |
-
|
54 |
-
### Curation Rationale
|
55 |
-
|
56 |
-
<!-- Motivation for the creation of this dataset. -->
|
57 |
-
Easy Loading for further uses when executing the training
|
58 |
-
|
59 |
-
[More Information Needed]
|
60 |
-
|
61 |
-
### Source Data
|
62 |
-
|
63 |
-
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
|
64 |
-
tbd
|
65 |
-
#### Data Collection and Processing
|
66 |
-
|
67 |
-
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
|
68 |
-
tbd
|
69 |
-
[More Information Needed]
|
70 |
-
|
71 |
-
#### Who are the source data producers?
|
72 |
-
|
73 |
-
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
|
74 |
-
Source Data is produced by [Github Repositoriy](https://github.com/Erechtheus/mutationCorpora) as described in the Github Repository
|
75 |
-
[More Information Needed]
|
76 |
-
|
77 |
-
|
78 |
-
## Bias, Risks, and Limitations
|
79 |
-
|
80 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
81 |
-
|
82 |
-
tbd
|
83 |
-
|
84 |
-
### Recommendations
|
85 |
-
|
86 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
87 |
-
|
88 |
-
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
|
89 |
-
|
90 |
-
## Citation [optional]
|
91 |
-
|
92 |
-
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
|
93 |
-
tbd
|
94 |
-
|
95 |
-
**BibTeX:**
|
96 |
-
|
|
|
1 |
---
|
2 |
+
dataset_info:
|
3 |
+
- config_name: Seth
|
4 |
+
features:
|
5 |
+
- name: id
|
6 |
+
dtype: int32
|
7 |
+
- name: tokens
|
8 |
+
sequence: string
|
9 |
+
- name: labels
|
10 |
+
sequence:
|
11 |
+
class_label:
|
12 |
+
names:
|
13 |
+
'0': O
|
14 |
+
'1': B-Gene
|
15 |
+
'2': B-SNP
|
16 |
+
'3': I-SNP
|
17 |
+
'4': I-Gene
|
18 |
+
'5': B-RS
|
19 |
+
'6': I-RS
|
20 |
+
splits:
|
21 |
+
- name: train
|
22 |
+
num_bytes: 1812838
|
23 |
+
num_examples: 504
|
24 |
+
- name: test
|
25 |
+
num_bytes: 438476
|
26 |
+
num_examples: 126
|
27 |
+
download_size: 0
|
28 |
+
dataset_size: 2251314
|
29 |
+
- config_name: Seth2003
|
30 |
+
features:
|
31 |
+
- name: id
|
32 |
+
dtype: int32
|
33 |
+
- name: tokens
|
34 |
+
sequence: string
|
35 |
+
- name: labels
|
36 |
+
sequence:
|
37 |
+
class_label:
|
38 |
+
names:
|
39 |
+
'0': O
|
40 |
+
'1': B-Gene
|
41 |
+
'2': B-SNP
|
42 |
+
'3': I-SNP
|
43 |
+
'4': I-Gene
|
44 |
+
'5': B-RS
|
45 |
+
'6': I-RS
|
46 |
+
splits:
|
47 |
+
- name: train
|
48 |
+
num_bytes: 1812838
|
49 |
+
num_examples: 504
|
50 |
+
- name: test
|
51 |
+
num_bytes: 438476
|
52 |
+
num_examples: 126
|
53 |
+
download_size: 0
|
54 |
+
dataset_size: 2251314
|
55 |
+
- config_name: conll2003
|
56 |
+
features:
|
57 |
+
- name: id
|
58 |
+
dtype: int32
|
59 |
+
- name: tokens
|
60 |
+
sequence: string
|
61 |
+
- name: labels
|
62 |
+
sequence:
|
63 |
+
class_label:
|
64 |
+
names:
|
65 |
+
'0': O
|
66 |
+
'1': B-Gene
|
67 |
+
'2': B-SNP
|
68 |
+
'3': I-SNP
|
69 |
+
'4': I-Gene
|
70 |
+
'5': B-RS
|
71 |
+
'6': I-RS
|
72 |
+
splits:
|
73 |
+
- name: train
|
74 |
+
num_bytes: 1812838
|
75 |
+
num_examples: 504
|
76 |
+
- name: test
|
77 |
+
num_bytes: 438476
|
78 |
+
num_examples: 126
|
79 |
+
download_size: 0
|
80 |
+
dataset_size: 2251314
|
81 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SETH-test.iob
ADDED
The diff for this file is too large to render.
See raw diff
|
|
SETH-train.iob
ADDED
The diff for this file is too large to render.
See raw diff
|
|
explorationFile.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
seth.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition"""
|
18 |
+
|
19 |
+
import re
|
20 |
+
|
21 |
+
import datasets
|
22 |
+
|
23 |
+
|
24 |
+
logger = datasets.logging.get_logger(__name__)
|
25 |
+
|
26 |
+
|
27 |
+
_CITATION = """\
|
28 |
+
@Article{SETH2016,
|
29 |
+
Title= {SETH detects and normalizes genetic variants in text.},
|
30 |
+
Author= {Thomas, Philippe and Rockt{\"{a}}schel, Tim and Hakenberg, J{\"{o}}rg and Lichtblau, Yvonne and Leser, Ulf},
|
31 |
+
Journal= {Bioinformatics},
|
32 |
+
Year= {2016},
|
33 |
+
Month= {Jun},
|
34 |
+
Doi= {10.1093/bioinformatics/btw234},
|
35 |
+
Language = {eng},
|
36 |
+
Medline-pst = {aheadofprint},
|
37 |
+
Pmid = {27256315},
|
38 |
+
Url = {http://dx.doi.org/10.1093/bioinformatics/btw234} Titel anhand dieser DOI in Citavi-Projekt übernehmen
|
39 |
+
}
|
40 |
+
"""
|
41 |
+
|
42 |
+
_DESCRIPTION = """\
|
43 |
+
This Dataset is used to for the Advanced Machine Learning and XAI course of the DHBW CAS in Heilbronn
|
44 |
+
"""
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
class SethConfig(datasets.BuilderConfig):
|
49 |
+
"""BuilderConfig for Seth Dataset"""
|
50 |
+
|
51 |
+
def __init__(self, **kwargs):
|
52 |
+
"""BuilderConfig for Seth.
|
53 |
+
|
54 |
+
Args:
|
55 |
+
**kwargs: keyword arguments forwarded to super.
|
56 |
+
"""
|
57 |
+
super(SethConfig, self).__init__(**kwargs)
|
58 |
+
|
59 |
+
|
60 |
+
class Seth(datasets.GeneratorBasedBuilder):
|
61 |
+
"""Seth dataset."""
|
62 |
+
|
63 |
+
BUILDER_CONFIGS = [
|
64 |
+
SethConfig(name="Seth", version=datasets.Version("1.0.0"), description="Seth dataset"),
|
65 |
+
]
|
66 |
+
|
67 |
+
def _info(self):
|
68 |
+
return datasets.DatasetInfo(
|
69 |
+
description=_DESCRIPTION,
|
70 |
+
features=datasets.Features(
|
71 |
+
{
|
72 |
+
"id": datasets.Value("int32"),
|
73 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
74 |
+
"labels": datasets.Sequence(
|
75 |
+
datasets.features.ClassLabel(
|
76 |
+
names=[
|
77 |
+
"O",
|
78 |
+
"B-Gene",
|
79 |
+
"B-SNP",
|
80 |
+
"I-SNP",
|
81 |
+
"I-Gene",
|
82 |
+
"B-RS",
|
83 |
+
"I-RS"
|
84 |
+
]
|
85 |
+
)
|
86 |
+
)
|
87 |
+
}
|
88 |
+
),
|
89 |
+
supervised_keys=None,
|
90 |
+
homepage="https://rockt.github.io/SETH/",
|
91 |
+
citation=_CITATION,
|
92 |
+
)
|
93 |
+
|
94 |
+
def _split_generators(self, dl_manager):
|
95 |
+
"""Returns SplitGenerators."""
|
96 |
+
#downloaded_file = dl_manager.download_and_extract(_URL)
|
97 |
+
data_files = {
|
98 |
+
"train": "./SETH-train.iob",
|
99 |
+
"test": "./SETH-test.iob",
|
100 |
+
}
|
101 |
+
|
102 |
+
return [
|
103 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}),
|
104 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"]}),
|
105 |
+
]
|
106 |
+
|
107 |
+
def _generate_examples(self, filepath):
|
108 |
+
logger.info("⏳ Generating examples from = %s", filepath)
|
109 |
+
with open(filepath, encoding="utf-8") as f:
|
110 |
+
guid = 0
|
111 |
+
document = {"id":None,
|
112 |
+
"tokens":[],
|
113 |
+
"labels":[]
|
114 |
+
}
|
115 |
+
documents = [] # Wird befüllt mit den Documented aus der Datei. Besteht aus einem Key "tokens" und "labels"
|
116 |
+
pattern = r"#\d+" # Reg Experassion um eine Documented ID zu detektieren
|
117 |
+
for idx, line in enumerate(f):
|
118 |
+
match = re.match(pattern, line)
|
119 |
+
#Überspringe erste Zeile weil das ein Header ist
|
120 |
+
if idx == 0:
|
121 |
+
continue
|
122 |
+
# Here ist die Dokumenten ID
|
123 |
+
if match:
|
124 |
+
if document["id"] != None:
|
125 |
+
# Speichere altes Dokument bevor ein neues angelegt wird
|
126 |
+
documents.append(document)
|
127 |
+
yield guid,document
|
128 |
+
guid+=1
|
129 |
+
document = {"id":int(line[1:]), # Speichere nur die Nummer ohne die Raute
|
130 |
+
"tokens":[],
|
131 |
+
"labels":[]
|
132 |
+
}
|
133 |
+
else:
|
134 |
+
#Initialisiere neues DOkument
|
135 |
+
document = {"id":int(line[1:]), # Speichere nur die Nummer ohne die Raute
|
136 |
+
"tokens":[],
|
137 |
+
"labels":[]
|
138 |
+
}
|
139 |
+
# Hier handeln wir die Sonderfälle ab
|
140 |
+
elif len(line.split(",")) >2:
|
141 |
+
# Sonderfall 1: ,,Label
|
142 |
+
if(line.split(",")[0] == "" and line.split(",")[1]==""):
|
143 |
+
document["tokens"].append(",")
|
144 |
+
document["labels"].append(line.split(",")[2].split("\n")[0])
|
145 |
+
# Sonderfall 2:Text,Text,Test,Label -> Label steht immer am schluss
|
146 |
+
else:
|
147 |
+
document["tokens"].append(",".join(line.split(",")[0:-1])) # Bringe die Splits wieder zusammen ohne das Label
|
148 |
+
document["labels"].append(line.split(",")[-1].split("\n")[0])
|
149 |
+
# Sonst gehen wir einfach vom standard aus Word sowie Tag
|
150 |
+
else:
|
151 |
+
word_tag = line.split(",")
|
152 |
+
# Hier erkennen wir den Ende eines Satzes dieser besteht aus " , "
|
153 |
+
if word_tag[0] == " " and word_tag[1] == " \n":
|
154 |
+
continue
|
155 |
+
document["tokens"].append(word_tag[0])
|
156 |
+
document["labels"].append(word_tag[1].split("\n")[0])
|
157 |
+
documents.append(document)
|
158 |
+
yield guid,document
|