## Script to sanitize and split Boldini2024 dataset #1. Import modules pip install rdkit pip install molvs import pandas as pd import numpy as np import urllib.request import tqdm import rdkit from rdkit import Chem import molvs standardizer = molvs.Standardizer() fragment_remover = molvs.fragment.FragmentRemover() #2. Download the original datasets # Download the original datasets from the paper #. Machine Learning Assisted Hit Prioritization for High Throughput Screening in Drug Discovery #. Davide Boldini, Lukas Friedrich, Daniel Kuhn, and Stephan A. Sieber* #. https://github.com/dahvida/AIC_Finder/tree/main/Datasets #3. Import one of the 17 datasets #. Here we chose GPCR.csv for example df = pd.read_csv("GPCR.csv") #4. Sanitize with MolVS and print problems df['X'] = [ \ rdkit.Chem.MolToSmiles( fragment_remover.remove( standardizer.standardize( rdkit.Chem.MolFromSmiles( smiles)))) for smiles in df['smiles']] problems = [] for index, row in tqdm.tqdm(df.iterrows()): result = molvs.validate_smiles(row['X']) if len(result) == 0: continue problems.append( (row['ID'], result) ) # Most are because it includes the salt form and/or it is not neutralized for id, alert in problems: print(f"ID: {id}, problem: {alert[0]}") # Result interpretation # - Can't kekulize mol: The error message means that kekulization would break the molecules down, so it couldn't proceed # It doesn't mean that the molecules are bad, it just means that normalization failed #5. Select columns and rename the dataset df.rename(columns={'X': 'SMILES'}, inplace=True) df[['SMILES', 'Primary', 'Score', 'Confirmatory']].to_csv('GPCR_sanitized.csv', index=False)